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Abstract

The emergence of Machine Learning (ML) has increased exponentially in numerous appli-
cations, including computer vision, speech recognition and natural language processing. This
is due to the intersection of the massive data generated by IoT devices (e.g. sensors, mobile
phones and smart devices) and the computing power available in cloud and data centers. Hence,
complex systems have been designed to improve the quality of life such as health monitoring,
smart homes and intelligent transport systems. However, the cloud computing has a number of
issues related to the trade-off between efficiency and latency. Indeed, the former cannot ensure
the performance for real-time applications due to the long-range network latency between the
cloud and end devices. For that reason, we propose to leverage these issues in this work by
proposing alternative solutions. First, we present a real-time network traffic prediction using
different DL models and compare their performance to a classic ML model named SVR by
using the Hyperparameters tuning process. In fact, traffic prediction is a tool for Internet
service providers to serve the customers better QoS, i.e. lessen the latency for sensitive applica-
tions. Second, we study the edge computing paradigm that attempts to unleash DL services by
bringing the cloud capabilities close to end users by deploying edge servers. Thus, we propose a
distributed inference framework for DL models. The latter intends to attain a high performance
while minimizing the computation latency for sensitive services and the energy consumption
of IoT devices. Extensive evaluations on the standard CNN "ResNet20" for object recognition
task using CIFAR10 dataset shows the effectiveness of the proposed framework in controlling
latency versus inference accuracy. To further enhance the distributed inference framework, we
propose automating the offloading decision and resource allocation of computing tasks for IoT
devices using Deep Q-Network (DQN), a well-known DRL algorithm. Several Simulations show
that DQN has been successful in managing execution of tasks belongs to IoT devices in order
to make the best use of available resources.

Keywords: Network Traffic Prediction, Time Series, Machine Learning, Recurrent Neural
Networks, Edge Computing, Distributed Computation, Convolutional Neural Network, Deep
Q-Network.
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Introduction

Thanks to advances in cloud computing capabilities and data center storage, Deep Learn-
ing (DL) has been very effective in ML across a wide range of application domains, including
computer vision, virtual/augmented reality, speech recognition and natural language process-
ing. For instance, the worldwide translator "Google Translate" uses Long-Short Term Memory
(LSTM) network, a DL model dedicated for natural language processing, in order to mine the
semantics of the sentences instead of mapping sentence to sentence [16]. However, DL’s high
performance comes at the cost of a long training of a deep network that encapsulates millions
of parameters. Additionally, DL inference is computationally expensive due to the high dimen-
sionality of the input data and the millions of computations that need to be performed over
multiple layers. Furthermore, it is becoming very difficult for the cloud to meet the demands of
computing tasks and real-time response due to the enormous expansion of IoT devices connected
to the Internet. According to Statista, the number of IoT connected devices has increased by
200% from 2015 to 2020 [29]. The study also found that it would reach approximately 75 billion
connected devices in 2025 as depicted in fig. 1. Moreover, Cisco Annual Internet report reveals
that IoT devices will produce around 850 ZB of data each year starting from 2021 [30].

Figure 1: The number of IoT connected devices from 2015 to 2025 [29]

Thus, actual cloud computing capabilities are unable to manage this massive data generated
from billions of devices. Indeed, the former cannot guarantee the delay requirements for real-
time applications of end devices (e.g. sensors, mobile users, cameras). Besides, offloading the

1
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computation from end devices to the cloud causes privacy issues related to sensitive data such
as sending personal information or indoor image capture [31].

A possible alternative is to analyze locally the massive flow of data generated by the end
devices . Yet the problem of computing resources and energy limitations arises. In fact, IoT
devices are known as resource-constrained devices because they were unable to meet the DL
needs. Hence, edge computing paradigm [32] appear to be an attractive solution that meets
the issues related to latency, scalability and privacy. The latter consists of migrating the DL
computations near the end devices by deploying local edge servers so that cloud resources
becomes available and with a promising response time. As a result, edge servers unburden
the huge computation demands from end devices to the cloud. For instance, a possible use-
case is to deploy edge servers to enable interactive experience at home by creating augmented
reality service for online shopping [33]. Even Edge Computing (EC) has a number of issues
related to the computing power. In fact, edge servers have not been able to cover computing
capabilities offered by cloud servers. As a result, edge servers cannot respond to the high
resource requirements that DL applications need.

Therefore, EC and CC should work together in order to respond to the IoT needs. In fact,
while EC can provide low latency and privacy, CC offers high power resources and scalability.
Actually, tremendous reseach that is going around in the thematic of collaboration between EC
and CC. It is in this perspective, that we want to implement, during this graduation project, an
alternative solutions that responds to the high demand of end devices using the collaboration
between cloud computing and edge computing.

This report summarizes the work we have achieved and the results that we have reached
since the month of February.

The outline of this report as follows:

• General Framework of The Project

• Mathematical Background

• Network Traffic Prediction

• Distributed DL Inference in EC scenario

• Computation Offloading for multi-user Mobile EC

2



Chapter 1

General Framework of the Project

Introduction

In this chapter, we start by representing the host laboratory LAAS-CNRS and the general
context of this internship.

1.1 Presentation of the host organization: LAAS-CNRS

1.1.1 Presentation of CNRS

The CNRS (Centre National de la Recherche Scientifique) is the french national research
organization and the main basic science institution in Europe. It is founded on several reseach
units. Each research unit has a specific mission in specific domains. Therefore, CNRS carries
out his activity in all fields of knowledge.

1.1.2 Presentation of LAAS-CNRS

The LAAS-CNRS (Laboratory of Analysis and Architecture of Systems) is a CNRS research
unit, established in 1968, based in Toulouse.

The research at LAAS-CNRS aims at fundamental understanding of complex systems while
considering the use that can result from it. Actually, The laboratory holds 8 scientific depart-
ments defines the directions for the coming years and coordinate the activities of 22 research
teams. In fact, the names of the scientific departments are as follows:

• Crucial Computing

3
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• Networks and Communications

• Robotics

• Decision and Optimization

• Microwaves and Optics : from Electromagnetism to Systems

• Technology & Instrumentation for the Monitoring of Complex Systems

• Micro Nano Bio Technologies

• Energy Management

During my internship, I have worked in SARA team (Services et Architectures pour Réseaux
Avancés) which his main thematic lies in networking and communication. In fact, the team’s
contributions relate in particular to the development of methods, models as well as to the
proposal of architectures, protocols and services.
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Chapter 2

Mathematical Background

2.1 Introduction

In this chapter, we provide an overview of the theoretical background of ML models used
in this project. The first section focuses on the presentation of ML and explains the different
categories of ML algorithms. A second part explains Deep Learning (DL) concepts and its main
components. Then, we present DL models used in this project. The third section introduces
the basic concepts in RL with a formulation of problems solved by RL models. In the last part,
we turn our focus to Deep Reinforcement Learning (DRL), a combination of RL and DL, and
we discuss the different class of RL algorithms.

2.2 Machine Learning (ML)

2.2.1 Definition

Machine Learning is a subfield of Artificial Intelligence, which involves the development of
self learning algorithms in order to make forecasts on new data. Because of the vast amounts of
data generated in our real world, taking advantage of these algorithms is becoming extremely
potential. Additionally, ML algorithms allow data patterns to be captured autonomously in
order to make data driven decisions.

2.2.2 Types of ML

In the literature, ML algorithms are classified into three categories:

• Supervised ML: In this class, we want to learn a predictive function f that maps
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inputs X to the desired outputs Y . A training process will be applied until the model
accomplishes a desired level of performance on a training data.

• Unsupervised ML: Unlike supervised ML, this type of algorithms doesn’t impose labels
for each row of data. Therefore, it learns hidden patterns in the data in order to make
clustering and feature reduction. For instance, it’s widely used for segmenting customers
in different groups for specific intervention.

• Reinforcement Learning (RL): RL is a type of learning where a machine is trained
to make optimal decisions autonomously by exposing it to an external environment.

Figure 2.1: Types of ML problems [3]

Hence, this project focuses on both supervised ML and RL.

2.3 Deep Learning (DL)

2.3.1 Introduction

Deep Learning is a new subfield of ML research. In fact, it was inspired by the structure
and the function of the brain in processing data and creating patterns for use in decision
making. Back through time, DL paradigm was explored since 1950 [34]. Then, a lot of research
was carried out until 1980, when they were struggling to train their proposed models and
to provide the expected storage for their data sets due to the limited hardware capacities.
In 1989, the first handwritten digits recognition model was build by Y. Le Cun using back-
propagation networks [35]. Nowadays, DL surpasses the human expert knowledge in several
fields such as computer vision, natural language processing and speech recognition by dint of
the high computing performance and the incredible available storage in cloud data centers. For
instance, Google’s DeepMind developed a system capable of beating a professional Go player
in 2015 using deep reinforcement learning [36].
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2.3.2 Artificial Neural Networks (ANN)

2.3.2.1 Definition

Neural Network is a series of algorithms that tried to mimic the function of the brain in order
to recognize the relationships in a set of data. It was discovered in the 80s and the early 90s
and was utilized later in many applications such as face recognition, object detection and many
other applications that are very difficult to solve unless the neural networks are existed.

An ANN is based on a collection of connected units where each neuron can transmit an
information to another neuron. A neuron could contain a weight that varies as learning proceeds
in order to minimize the loss function which we will refer to it in the next parts.

In the theoretical perspective, it is simply a non-linear function that maps the inputs to the
outputs by finding correlations and could be written in a formula:

Y = f(X) (2.1)

where Y represents the Output, X is the Input and f is a non-linear function.

2.3.2.2 ANN Architecture

In ANN, each node presents a neuron, and each column represent a layer. The first layer is
called the input layer. The rightmost or output layer contains the output neurons, the number
of neurons represents the number of classes we are classifying. Any intermediate layer is called a
hidden layer. In addition, each neuron has a propagation function that transforms the outputs
of the connected neurons often with a weighted sum followed by an activation function.

Figure 2.2: ANN Architecture [37]
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The example depicted in fig. 2.2 of an ANN is composed of 6 neurons as input layers, 1st

hidden layer with 4 layers, 2nb hidden layer with 3 neurons, and the output layer contains one
single neuron.

Figure 2.3: Propagation Function for a Single Neuron

Indeed, the relationship between the neurons in each layer is a nonlinear function. As depicted
in fig. 2.3, each neuron which is connected with neurons from the previous layer have m + 1

parameters where m represents the number of neurons in the previous layer and it could be
written in a formula:

y = f(b+
m∑
i=1

wi.xi) (2.2)

where:

• b: represent the bias which avoid the model from the overfitting problem where the NN
adopts its parameters to the training set and achieve low performance on the test set.

• f : represents a nonlinear activation function applied to the weighted sum of inputs. It
is one of the key knob that make it possible to model non-linear problems. Actually, we
need to use nonlinear model to make sense of a complicated and a high dimensional data.

The most used activation functions are shown in the table. 2.1:

Activation Function Formula
ReLU f(x) = max(0, x)

Tanh f(x) = 2
1+exp(−2x) − 1

Sigmoid f(x) = 1
1+exp(−x)

Table 2.1: Examples of Activation Functions
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2.3.2.3 Forward Propagation

As the name reveals, the input data will be forwarded through the network. Each hidden
layer accepts input data, processes the data by calculating the activation function of each
received signals for each neuron, and then continues to extract the information until it reaches
the output layer where we have the prediction result.

2.3.2.4 Backward Propagation

Backward propagation is the essence of neural network training. It is the practice of fine-
tuning the weights of a neural network based on error rate induced by the loss function. Back-
ward propagation uses the gradient of the error function with respect to the weights and biases
of the model to find the correct direction to minimize the error. The optimization algorithm
and the learning rate variable are those who control the correction. This mechanism is based
on loss function and optimization functions that I did not mention in my report so as not to go
deeper into the concept of the neural network. For those who are interested in understanding
this concept, I recommend them viewing the courses of DeepLearning.ai offered by Andrew Ng
in Coursera platform [38].

2.3.3 Convolutional Neural Network (CNN)

2.3.3.1 Introduction

CNN is a class of ANN and the most used type in Computer Vision and Augmented Reality.
It was proposed by Yann Lecun in order to diminish the complexity of the calculations in a
complex neural network i.e. a fully connected neural network.

2.3.3.2 Definition

The CNN inherits the same architecture of an artificial neural networks i.e. he possessed an
input layer, a series of hidden layers, and an output layer. Unless, he has specific hidden layers,
where each hidden layer consists of a convolutional layer that convolves using multiplication or
dot product. Hence, we present the most used types of layers in CNN as demonstrated in the
next section.

2.3.3.3 CNN Layers

• Convolutional Layer: The convolutional layer is the core of building block of a CNN
that does most of the computational heavy lifting. This latter is a collection of filters
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that are convoluted with the previous layer that are designed to extract features and
information. Indeed, each filter has its own hyperparameters such as: Dimensions, Stride,
Padding.

Figure 2.4: Convolutional Layer Example [39]

• Pooling Layer: Pooling Layers are used after convolutional layers in a CNN in order
to reduce the dimensions of the data by combining the outputs of neuron clusters at one
layer into a single layer. There are many types of Pooling layer such as:

– Max-Pooling: Compute the maximum value in each cluster in order to extract the
most important pixel in the patch.

– Average-Pooling: Compute the average value in each cluster in order to extract
the mean value in the patch.

Figure 2.5: Example of Pooling Layers

• Fully Connected Layer: This layer is used to make high-level reasoning by connecting
all the activation signals from the previous layer. Usually, it is used to perform classifi-
cation based on features extracted from the convolutional layers.
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2.3.4 Recurrent Neural Network (RNN)

2.3.4.1 Definition

RNN is a subclass of ANN that contains feedback loops as opposed to FFNN. As depicted in
fig. 2.6, these recurrent connections allow the information about previous time step to persist in
the internal state of the network and hence influence the output efficiency. For instance, RNN
have recieved huge success in dealing with data such as time series which have a sequential
order that needs to be followed in order to be understandable.

Figure 2.6: Example of a Simple RNN

Formally, the output of a recurrent neuron could be formalized as follow:

ŷt = fY (ht) (2.3)

Where:

• ht: represents the hidden state of the network. In fact, it stores the actual input signal
each time we make a forward pass and apply a non linear function as demonstrated below:

ht = fW (xt, ht−1) (2.4)

• fW : represents a non linear function that merge the signals of both the input vector and
the previous hidden state.

• fY : represents a non linear function applied to the actual hidden state in order to produce
the predicted vector.

As a result, the RNN model updates both its hidden state and the predicted vector within
each forward pass.
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For example, one of the most used nonlinear functions for the RNN update is represented as
follows:

ht = tanh(W T
hhht−1 +W T

xhxt) (2.5)

yt = W T
hyht (2.6)

Where: Wxh, Whh and Why represents respectively the weight matrices of the input, the hidden
state and the output.

Figure 2.7 depicts a frequent form of visualization for RNNs known as unfolding. Indeed,
an RNN is unfolded by developing its computational graph over time and removing the loop
connections. Thus, RNN unfolding reveal the repetition in the recurrent neuron and show the
number of time steps required to complete a task.

Figure 2.7: Unfolding of RNN neuron

2.4 Reinforcement Learning (RL)

2.4.1 Definition

RL is a subfield of ML that allows machines to learn automatically by interacting with an
external environment without the need to acquire a data set for training and evaluation.

More formally, RL is a computational approach to learn from interaction where an agent
pick out an action and receives a numerical signal, named reward, that informs the agent of
the relevance of the action chosen. Instead of drawing on the experience of experts to learn
from, RL allows an agent to learn on its own by focusing on maximizing the cumulative rewards
received from the environment. Actually, the concept of learning by interacting with an external
environment is an imitation from the natural learning process of human being.

In this section, we present the elements of RL. Then, we turn our focus to explain in advance
the deployed algorithm in this project.
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2.4.2 RL Components

Reinforcement Learning is based on learning behavior through interactions with the environ-
ment in a discrete time steps. As depicted in figure 2.8, the interaction has two main stages,
observation and action. The interaction is basically between the agent and the environment.
Hence, the environment begins by sending the current state st to the agent. Based on the
knowledge acquired by the agent, he will take an action at in response to that state. As a
result, the environment emits a feedback based on the chosen action. The feedback contains a
reward signal rt and a new state st+1. The former represents the influence of the action on the
environment and measures the success or failure of the agent’s action while the latter is the
new state of the agent. This process is repeated between the agent and the environment until
a stop condition has been validated.

Figure 2.8: Interaction Between Agent and Environment

The agent attempts to maximize the discounted cumulative reward Rt instead of the current
reward. Indeed, the cumulative reward is expressed as follows:

Rt =
∞∑
i=t

γiri = rt+1 + γrt+2 + ...+ γt+nrt+n + ... (2.7)

Where:

• γ represents the discount factor. It is always comprised between 0 and 1. It was designed
to give more importance to earlier rewards. From a mathematical perspective, it ensures
the convergence of the time series.

2.4.3 Policy

The agent perceive the environment and decides the optimal action according to a policy
function π. Actually, the policy represents the core of RL in the sense that it is sufficient to
determine behavior [53]. It informs the agent what action to be selected in a given state. It
could be deterministic or stochastic depending on the problematic and the choice of the model.
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In the case of a deterministic policy, it is simply a mapping function from perceiving states
of the environment to the actions to be taken in those states. Hence, we have the following
expression:

π(st) = at st ∈ S, at ∈ A (2.8)

Otherwise, the policy becomes a probability distribution in case of a stochastic policy and it
could be expressed as follows:

π(at|st) = pi st ∈ S, at ∈ A, pi ∈ [0, 1] (2.9)

During the interaction between the RL agent and the environment, the agent tries to converge
to the optimal policy π∗. In essence, there are several learning algorithms that exists in the
literature that aim to converge the policy using different strategies.

2.4.4 Value Function

Whereas the reward signal indicates what is good in an immediate sense, a value function
specifies what is good in the long term. For instance, a state might always provide a low
immediate reward but still have a high value because it is regularly followed by other states
that yield high rewards. Indeed, value functions estimates the discounted cumulative reward
Rt for every possible state. It could be formalized as follows:

Vπ(s) = Eπ(Rt|st = s) = Eπ[
∞∑
i=t

γiri|st = s] (2.10)

2.4.5 Q-Function

A Q-function defines how good an action is for each state. It represents the expected cumu-
lative reward for every action in each state. Hence, it could be expressed as follow:

Qπ(s, a) = Eπ(Rt|st = s, at = a) = Eπ[
∞∑
i=t

γiri|st = s, at = a] (2.11)

The use of Q-function is more appropriate than Value function since it evaluates every possible
action that could be token in a given state. In contrast, value function takes into account
every possible actions and observes all possibles next states and selects the action based on the
highest state value which appears too complicated and impractical. Hence, the majority of RL
research studies focuses on estimating Q-Function rather than value function.

Furthermore, there is a relationship between Value function and Q-function which could be
formalized as follows:

Vπ(s) = max
a∈A

Qπ(s, a) (2.12)
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Ultimately, the agent needs a policy to infer the best action in its state st. Indeed, the
strategy is to choose the best action that maximizes future rewards. The optimal policy could
be expressed as follows:

π∗(st) = argmax
a∈A

Q(st, a) (2.13)

2.4.6 Exploration vs. Exploitation Trade-Off

Imagine that you are going out to eat with your friends tonight. When you get to the
restaurant, you will have to decide what to order. You’ve been there a couple of times before
and you always order the same thing. So you know you are going to be pretty happy if you
order it again. Many of the other items though look really tasty. How do you decide when to
order the same good meal again, or try something new.

Actually, the same issue arises for RL agent when it comes to selecting actions based on
the actual optimal policy or exploring unvisited states by selecting random action. Indeed,
exploration is needed because there is always uncertainty about the actual estimated Q-values.
However, the agent risks to end up in a bad state and accumulates negative rewards. Hence,
this is so called exploration exploitation trade-off.

To solve this dilemma, there are several approaches that attempts to balance exploration
and exploitation. For instance, ε-Greedy is the most widely used strategy in the literature due
to its simplicity. Indeed, the agent selects an action randomly with a certain probability ε.
Otherwise, the latter exploits the current knowledge by choosing the optimal action with the
highest Q-value. As a result, ε-Greedy strategy could be formalized as follows:

at =

argmaxa∈AQ(st, a) with a probability 1− ε

pull random action with a probability ε
(2.14)

Besides, it is ε-Greedy strategy that we have adopted in our project.

2.5 Deep Reinforcement Learning (DRL)

2.5.1 Definition

In RL, a large amount of memory is usually required to store value functions and Q-functions.
Actually, the easiest way to represent an RL problem is to store each state-action pair in the
form of table. This is known as Tabular Method. In fact, most of RL uses cases have an
infinite state space, which makes it impossible to store value functions or Q-functions in tables.
Therefore, the trial and error interaction between the agent and the environment is hard to
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be learned due to the huge computation and the storage requirements for real world problems.
This is where Deep Learning (DL) comes into place in order to estimate Q-functions and value
functions. As a consequence, the fusion of DL and RL becomes a promising solution in order
to leverage complex real world use cases. For instance, the estimator of Q-function could be
expressed as follows:

Q̂(s, a, θ) ' Qπ(s, a) (2.15)

where:

• θ : represents a real vector that contains the parameters of the estimator. These weights
are updated throughout the learning of the agent in the aim to converge to the actual
discounted total reward.

• Q̂ : represents the estimator of Q-function.

Q-Function could be approximated using Artificial Neural Networks (ANN). Indeed, ANN
could be trained using gradient descent to minimize the error between q̂ and the discount
cumulative reward R.

2.5.2 Deep Q-Network (DQN)

Based on estimating Q-Function using neural networks, Mnih et al. [54] introduce Deep
Q-Network algorithm in 2015 which have achieved high performance in learning ATARI games.

Figure 2.9: Two Possible Configurations of DQN

As depicted in figure 2.9, the neural network in DQN has two configurations: 1) takes as
input the state and estimate the Q-values for each possible action 2) takes as input both the
state and its corresponding action and the model estimate the Q-value for this state-action
pair.
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2.6 Conclusion

In this chapter, we had an overview on the main components about ML. We have introduced
the DL paradigm and the various ANN models used in this project. Then, we presented RL as
a self-learning approach and its main elements. Finally, we discussed the benefits of DL for RL
and we presented the well-known algorithm Deep Q-Network (DQN).
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Chapter 3

Network Traffic Prediction

Introduction

We start this chapter by a general description of network traffic prediction. Then, we turn
our focus on exploratory data analysis and the modelling phase. Finally, we end up with
performance evaluation of the fitted models and the Hyper-Parameters tuning.

3.1 General Description

3.1.1 Problem Statement

With the rapid growth of Internet Technology, network traffic is growing exponentially. As
a result, the resource management is becoming more difficult and more complex for Internet
service providers. Hence, current traditional models cannot forecast network traffic that acts
as a nonlinear system. In this chapter, we propose to leverage the emerging deep learning
techniques to predict network traffic. Extensive experiments were conducted to evaluate the
performance of the proposed models using real-world data and we compare the accuracy of the
chosen model with a baseline model named Support Vector Regression (SVR).

3.1.2 Project Goals

By improving the precision of network traffic prediction, this yields to significant gains for
network providers. In fact, traffic prediction has become the engine for many interesting appli-
cations such as resource allocation, short-term traffic scheduling, Long-Term capacity planning,
network design and anomaly detection.
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3.1.3 Categories of Network Traffic Prediction

We can distinguish four types of prediction according to [2] based on the forecasting time
scale:

• Real-Time Forecasting: This type requires the shortest time interval between data
that do not exceed a few minutes, which can be used to establish an online real-time
forecasting system.

• Short-Term Prediction: It often linked with a duration of one day to few hours. Hence,
its application is mainly anomaly detection and decision making in critical situations.

• Medium-Term Prediction: Its duration is from several days to one month. In fact, it
can be used to guide resource planning.

• Long-Term Prediction: Long-Term prediction is usually one year. Hence, it can be
used for economic investment and designing infrastructure.

Thus, based on the duration of collected Internet traces which is about several days, we have
been interested in Real-Time forecasting class. Specifically, we want to forecast the volume of
traffic in the range of seconds and minutes, using as input a time series signal comprised by the
previous observations of this value sampled at one-minute intervals.

3.1.4 Related Work

In the literature, several approaches to network traffic prediction have been proposed. Ac-
tually, A. Lazaris et al. [44] propose that multiple types of LSTM be used to forecast the
link throughput using real world data set. In addition, W. Shihao et al. [45] choose to use
LTSM model to predict network traffic volume. The former considers the characteristics of the
auto-correlations in order to improve the accuracy of the model. Additionally, Azzouni et al.
[43] consider the network traffic matrix to estimate the future network traffic from the previous
network traffic data using LSTM models. In a study on prediction of TCP throughput, Mizana
et al. [46] leverage Support Vector Regression (SVR) to predict the TCP throughput based on
basic network characteristics, including available bandwidth, queuing delays, and packet loss.

3.1.5 Motivation and Main Contribution

The contributions of our work are summarized below:

• We present an in-depth analysis of the capabilities of Recurrent Neural Network (RNN)
models in network traffic prediction.
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• We evaluate our proposed models using real world network traffic.

• We compare the existing schemes to find their effectiveness for real-time applications. A
detailed analysis of performance for three proposed models (LSTM, GRU, SVR).

• We propose to perform a Hyperparameter Tuning process to find out the optimal weights
that provides accurate models. To the best of our knowledge, we are the first that tries to
leverage the difference between RNN variants in network traffic prediction problem using
Hyperparameter Tuning process.

3.2 Forecasting Models

3.2.1 Introduction

In this section, we present different forecasting models used to predict the volume of network
traffic.

3.2.2 Support Vector Regression (SVR)

3.2.2.1 Definition

In 1997, a new regression model has been introduced by Vapnik called Support Vector Re-
gression which represents the most common variant of SVM.

In fact, SVR attempts to minimize the generalization error bound in order to achieve good
generalization performance as opposed to the traditional regression algorithms that aims to
minimize the observed training error. Hence, it gives us the mobility of how much error is
acceptable and find out the appropriate curve that fit the data.

More specifically, SVR is formulated as an optimization problem as shown in the equation
below by defining a convex ε-insensitive loss function to be minimized and tune the margin ε
in order to gain the desired accuracy of the trained model by finding the optimal tube that
contains most of training samples.

min
w

1

2
||w||2

s.t. |yi − wixi| ≤ ε,∀i ∈ [1, N ]

ε ≥ 0

(3.1)

The following figure illustrate the optimization problem that SVR is trying to solve:
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Figure 3.1: One-Dimensional Linear SVR [4]

3.2.2.2 Kernel SVR and Different Loss Functions

For nonlinear functions, where data could be mapped into higher dimensional space, standard
SVR couldn’t be applied due to its linearity. Thus, a kernelfunction was introduced that tries
to make transformation from feature to kernel space. The problem is formulated in equation
(3.2) :

min
w

1

2
||w||2 + C

N∑
i=1

ξi + ξi
∗,

s.t. |yi − wTk(xi)| ≤ ε+ ξi,∀i ∈ [1, N ]

ξi, ξi
∗ ≥ 0

(3.2)

Threfore, The following figure illustrate the nonlinear regression problem that SVR is trying
to solve:

Figure 3.2: Non-Linear Regression

Source: [5]

There are several types of kernel functions such as:
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• Polynomial Kernel

• Gaussian Kernel

• Gaussian Radial Basis Function

• Laplace RBF Kernel

We have chosen RBF kernel function because of its success with most of nonlinear regression
problems and its wide use in the literature. In fact, the RBF kernel can be defined as follows:

k(x(i), x(j)) = exp(
||x(i) − x(j)||2

2σ2
) (3.3)

3.2.3 Long-Short Term Memory (LSTM)

LSTM is one of the most well-known variant of RNN layers. It was introduced in 1997 by S.
Hochreiter et al. [40]. In fact, it contains computational blocks that control the flow of infor-
mation within a cell. Computational blocks are called gates that selectively allow information
to enter or quit the cell based on the acquired knowledge. As a result, if the information is
not important, the input signal will be discarded from the LSTM unit. In contrast, the LSTM
cell stores merely relevant information in its internal memory. Thus, LSTM extents the RNNs
models with two major advantages: 1) Introduce memory information 2) Handle long sequences
more better.

Looking at LSTM cell as black box in fig. 3.3, the input is a vector of combination of the
input vector xt and the previous hidden state ht−1, where the output at time t is denoted as
the output vector yt, the actual hidden state ht.
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Figure 3.3: LSTM Cell

Looking at the design of LSTM cell, it consists of a memory state Ct and three gates. As
mentioned Above, Input gate controls what needs to be updated in the memory state, and
the Forget gate controls what needs to be forgotten. The output gate controls the part of the
memory state that will be used as output. Each gate has its computational block to estimate
the importance of the input information. Indeed, each block consists of a matrix to vector
multiplication {Wi,Wf ,Wo,Wc} followed by a bias term {bi, bf , bo, bc}. The computational
blocks that forms the LSTM neuron are as follows:

• Input Gate: The role of the input gate is to decide which information is to be renewed.
The input gate output is calculated using the weight matrix Wi and the bias bi. The
activation function used in this block is Sigmoid.

it = σ(Wi[ht−1, xt] + bi) (3.4)

• Forget Gate: The role of the forget gate is to decide which information should be
discarded.

ft = σ(Wf [ht−1, xt] + bf ) (3.5)

• State Computation: The role of this block is to update the new memory state Ct of
the neuron. First, it calculate the possible combinations for the memory state:

Ĉt = tanh(WC [ht−1, xt] + bC) (3.6)

Then, the new memory state is calculated using the estimated new memory state, the
previous memory state multiplied by the output vector of the forget gate ft.

Ct = ft � Ct−1 + it � Ĉt (3.7)
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• Output Gate: Finally, the output gate computes the output vector for the given input
signal. First, the output gate vector is computed using Sigmoid activation function:

ôt = σ(Wo[ht−1, xt] + bo) (3.8)

Then, the output vector is calculated using element wise multiplication between the out-
put of the output gate and the activation signal of the actual memory state:

ŷt = ot � tanh(Ct) (3.9)

3.2.4 Gate Recurrent Unit (GRU)

GRU is a variant of RNN layers. It was proposed by K. Cho in 2014 [41]. It was designed to
capture dependencies at different time scales in an adaptive manner. Unlike LSTM, this type
of RNN neurons consists of only two gates and one memory state. Hence, it contains three
computational blocks. As a result, GRU is becoming more computationally efficient and more
promising for resource-constrained devices, as is our case. Fig. 3.4 illustrate in advance the
architecture of the GRU neuron.

Figure 3.4: GRU Cell

The three computation blocks are as follows:

• Reset Gate: The reset gate is used to decide whether to use the previous output or
discard the input as the first symbol in a sequence. The reset output vector rt is calculated
as follow:

rt = σ(Wr[ht−1, xt]) (3.10)
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Where: xt is the input vector, ht−1 is the hidden state output vector, Wr is the weight
matrix and σ is the Sigmoid activation function used for this gate.

• Update Gate: The update gate determines how much of the output is updated. The
output of the update gate is calculated using the weight matrix Wr:

zt = σ(Wz[ht−1, xt]) (3.11)

• Output Gate: The role of this gate is to calculate the hidden state ht. Similarly to
LSTM output gate, it computes the possible combinations of the hidden state ĥt:

ĥt = tanh(Wo[rt � ht−1, xt]) (3.12)

Then, the new hidden state is computed based on the possible combinations:

ht = (1− zt)� ht−1 + zt � ĥt (3.13)

According to [42], the number GRU operations and parameters is about 75% compared
to LSTM neurons.

3.3 Experimental Methodology

In order to evaluate our forecasting models, we have used real network traces. In fact, we
compare the performance of two variants of RNN with the baseline regression model SVR.

Hence, we start by presenting the software environment. Then, we turn our focus on ex-
ploratory data analysis and data preprocessing. Finally, we will discuss the modeling phase by
including the performance evaluation of the fitted models.

3.3.1 Software Environment

3.3.1.1 Programming Language Python

Python has been the choice for Machine Learning and Artificial Intelligence developers and
researchers for a long time. Hence, it contains the most advanced features and libraries that
increase the productivity by abstracting complex algorithms and versatile workflows.

3.3.1.2 Libraries and Packages

Python comes with the support of a broad set of open source libraries:

25



CHAPTER 3. NETWORK TRAFFIC PREDICTION

• Numpy: Numpy is one of the most basic library in Python for multidimensional data
manipulation.

• Matplotlib: Matplotlib is a library for producing visualizations in Python.

• Scikit-learn: Scikit-learn is a python Machine Learning library.

• TensorFlow: TensorFlow is a high-level library available for working with Deep Learning
on Python.

3.3.2 Data Analysis

3.3.2.1 Data Collection

In order to implement a predictive model, there is always a mandatory step which is choosing
the right data set for both training and evaluation. In fact, we have used a real traffic data
taken from the University of Leipzig Internet access link [1]. A pair of DAG 3.2 cards were used
to monitor network traffic from campus network to the German research network (G-WiN). A
diagram of the configuration is illustrated in figure 3.5.

Figure 3.5: Network Configuration

Source: https://wand.net.nz/wits/leipzig/gmwin.png

After selecting the data source, we have chosen the traffic that is directed from the German
research network to the campus network with a duration of 4 days and 18 hours. Thus, all
outer connections pass through this measurement point.

In addition, all non-IP traffic has been removed, and only TCP, UDP and ICMP traffic are
kept in the traces. Then, all IP addresses have been anonymised using one-to-one mapping into
another address space.
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3.3.2.2 Data Preprocessing

At first, we have converted the traces from compressed format into PCAP files using Libtrace
tool [6] in order to make them readable . Thus, The collected raw data set consists of network
packets in PCAP format. The network traffic captured 3429 million packets over 4 days and
18 hours. In fact, the storage of this traffic was about 1615 GB.

Hence, we processed the data in order to transform it into a time series that represents the
length of packets at each minute. This resulted in a time series containing 6839 values as
illustrated in the figure 3.6. This part of the process was done using Bash scripts in order to
optimize the execution time.

Indeed, this data was sufficient to implement our network traffic prediction because we notice
that it’s about a periodic curve where the long term regularities are evident.

Figure 3.6: Time Series of the Network Traffic Volume for about 5 days

3.3.2.3 Data Normalization

Training of ML algorithms often performs better with standardized input data. In fact,
normalizing features is not only essential for comparing features with different scales, it is a
common prerequisite for many machine learning algorithms. For instance, in the absence of
normalizing features for optimization algorithms, some weights may update faster than others
as feature values plays a role in updating weights.

Hence, we apply the Gaussian transformation (i.e. subtracting the mean and dividing by the
standard deviation) as mentioned in the equations above.
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First, we need to calculate the mean:

µ =
1

n

n∑
i=1

xi (3.14)

Then, we calculate the standard deviation:

µ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (3.15)

Finally, we calculate the normalized values as follows:

xi =
xi − µ
σ

∀i ∈ [1, N ] (3.16)

3.3.3 Data Transformation

Time Series prediction requires a set of past observations in order to estimate future values
of the features of interest. Actually, there are mainly two categories as explained below:

• One-Step Prediction:

The most straightforward strategy is one step prediction which is about taking a vector
that include the last observations as input to the model responsible for yielding the
prediction. Specifically, for a set of samples observed at times t0, t1, ..., tn, the value at
time tn+1 is estimated.

• Multi-Step Prediction:

Multi-Step Prediction is about predicting upper than one step ahead based on the same
historical samples. Specifically, for a set of samples observed at times t0, t1, ..., tn, the
values at time tn+1, tn+2, ..., tn+m are estimated.

For formalization, we denote:

– Step Back : The number of historical samples that will be put as input to the
predictive model.

– Step Ahead: The number of future samples that will be predicted.

Indeed, Multi-Step Prediction is more challenging than One-Step Prediction due to the
accumulation of errors and the lack of information needed to predict further samples in
the future [7].

In order to overcome these issues, a multiple-input multiple-output (MIMO) strategy was
proposed by Bontempi [8] which consists of producing a vector of future predicted values
instead of a single value. Therefore, this method uphold the stochastic dependency of the
time series.
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To wrap up, a sliding window concept is introduced to indicate a fixed number of previous
samples to be learned in order to forecast the future time steps. Hence, for a given time slot t,
the input vector contains the following values:

[Xt−StepBack, ..., Xt−2, Xt−1] (3.17)

On the other side, the output vector contain the following values:

[Xt, Xt+1, ..., Xt+StepAhead] (3.18)

3.4 Modeling: Training and Validation

In this section, we will demonstrate how each model was fitted and evaluated.

At first, the data set was divided into two parts, as indicated below, using Test-Set Valida-
tion technique which is the most basic strategy for estimating the reliability and the robustness
of the predictive models. Indeed, we split the data into two separate portions:

• Training Set: It contains 80% of the original data. Hence, this portion will be used for
training the predictive models.

• Test Set: It contains 20% of the original data. Hence, the fitted models will be validated
on the Test Set.

Then, we turn our focus on the model architecture of each forecasting model.

3.4.1 Recurrent Neural Network (RNN)

We have used two variants of RNN:

• Long Short Term Memory (LSTM)

• Gate Recurrent Unit (GRU)

The proposed architecture of the two RNN variants has the same number of layers as depicted
below:

• Encoder: The encoder consists of a single layer containing 16 (LSTM / GRU) neurons.
Indeed, it is responsible for encoding the time series to the state of the network.
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• Decoder: The decoder consists of four consecutive layers where each layer contain by
default 8 (LSTM / GRU) neurons. This will decode the encoding vector in order to
generate the output sequence.

In order to set the optimal weights of the chosen RNN models and minimize the error rate
between the actual output and the predicted sequence, a loss function is required. In the
literature, the most used loss function for regression problems is Mean Squared Error (MSE).
Therefore, it could be defined as follows:

MSE =
1

n

N∑
i=1

(Yi − Ŷi)2 (3.19)

where

• Yi represents the actual output.

• Ŷi represents the predicted output.

We have picked out RMSProp as an optimizer for updating the NN weights in the Gradient De-
scent algorithm. The selection was actually based on a rigorous benchmark of three optimizers
(SGD, RMSProp and AdaGrad).

Then, The proposed models were trained on the training set with the following Hyperparam-
eters (Randomly Chosen):

• Time Granularity: 1 minute.

• Step Back: 60

• Step Ahead: 20

• Encoder: Composed of one single (LSTM/GRU) layer that contains 16 neurons.

• Decoder: Composed of four (LSTM/GRU) layers that contains respectively 8, 8, 16, 16
neurons.

• Epochs: 1000

• Batch Size: 10

• Loss Function: Mean Squared Error (MSE)

• Optimizer: RMSProp

At this stage, the model is ready for training and evaluation phase.
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(a) Prediction Result of GRU Model (b) Prediction Result of LSTM model

Figure 3.7: Difference of the Test Result Between two RNN variants

For evalutation purpose, the mean absolute percentage error (MAPE) is used as the evalua-
tion indicator of the proposed models:

MAPE =
1

N

N∑
i=1

|Yi − Ŷi
Yi
| × 100% (3.20)

Indeed, we have found accurate results from our primary test. The mean absolute percentage
errors of the two RNN models on the test set are shown in the table 3.1 below:

LSTM GRU
MAPE (%) 16.96 5.8

Table 3.1: Comparison of Results Between two variants of RNN

Figures 3.7a, 3.7b show the difference between predicted values and the actual times series
for both GRU and LSTM models.

Based on this primary run, it appears that GRU model outperform the LSTM model in the
test subset. An interesting finding that stimulates a study of the fine tuning process in order
to determine the most reliable model for network traffic prediction task.

3.4.2 Support Vector Regression (SVR)

We have chosen SVR model as the baseline for the comparison of performance between DL
models and classical ML models. Hence, the same metric function was used (MAPE). As far
as the Hyper Parameters is concerned, we have set the default values as illustrated below:

• Time Granularity: 1 minute.
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• Step Back: 60

• Step Ahead: 20

• Kernel Function: RBF

• C: 1.0

• ξ: 0.01

Then, the SVR baseline model was trained with the default parameters. Hence, the predic-
tions are made on the test subset. The MAPE was 7.53% for One-Step prediction as illustrated
in the figure.

Figure 3.8: Prediction Result of SVR model

Based on the default configuration, we observe that GRU model outperforms the SVR model.
Therefore, the primary results represents a blurry picture. Hence, a fine tuning process is
required to pick out the most accurate model.

3.5 Fine Tuning

Throughout this section, we will try to refine the hyper parameters of the forecasting models
in order to improve the accuracy. Indeed, we conducted our optimization using Grid Search
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approach. This latter performs every conceivable combination of the Hyper Parameters. As a
result, it necessitate a massive computation in order to complete the task.

Hence, we define a grid of n dimensions where each dimension represents a Hyper Parameter.
In our case, n = (Step Back, Step Ahead, Number of Neurons in the Encoder layers, Number
of Neurons in the Decoder layers).

The table 3.2 below demonstrate the range of possible values that the Hyper Parameters
could receive.

Minimum Maximum Step
Step Back 10 200 5
Step Ahead 20 200 5
Encoder "Layer 1" (#Neurons) 20 200 5
Decoder "Layer 1" (#Neurons) 20 200 5
Decoder "Layer 2" (#Neurons) 20 200 5
Decoder "Layer 3" (#Neurons) 20 200 5

Table 3.2: Configuration of the Hyper Parameters for Grid Search

As a consequence, we search for all the possible configurations. As we can see, with more
dimensions, the more time-consuming the search will be. In our case, we have around 6500
combinations for the Hyper Parameters. This means that we have to train the predictive models
6500 times.

In order to compensate this huge computation, we have run the Fine Tuning process on the
LAAS computing platform. This latter contains 228 cores and 1.6 TB of RAM spread over 7
machines. This cluster is primarily designed for distributed computing. Hence, all the tasks
are executed using the resource manager SLURM [9].

Thanks to this platform, the Hyper Parameters Tuning process took about 24 hours to
complete. Hence, we have found interesting insights as illustrated in the table 3.3.
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Id algorithm look back look ahead neuron1 neuron2 neuron3 MAPE: 1 Step
1 GRU 40 20 50 50 50 3.06
2 GRU 60 20 40 70 70 3.08
3 GRU 30 30 100 80 80 3.12

16 LSTM 20 30 70 70 70 3.18
17 LSTM 30 30 50 90 90 3.18

4281 SVR 10 20 6.06

6491 LSTM 100 100 60 10 10 33.38
6492 LSTM 30 100 10 10 10 34.97

Table 3.3: Results of the Fine Tuning Process

In the first rows, we find that GRU model has achieved the best MAPE metric for around
3%. Then, the first LSTM model is ranked 16 with a MAPE equals to 3.18%. The baseline
model SVR has achieved a MAPE equals to 6.06% as the highest result from all the possible
combinations and it is ranked 4281 in the Fine Tuning process.

A closer look at the variations of the RNN models demonstrate that GRU has better perfor-
mance over LSTM as illustrated in the figure 3.9 below:

Figure 3.9: Comparison Between two variations of RNN

In conclusion, GRU has better performance than both of LSTM and SVR on the network
traffic prediction problem. This result couldn’t be observed unless the Fine Tuning process.
Hence, it shows the importance of this phase.

34



CHAPTER 3. NETWORK TRAFFIC PREDICTION

3.6 Conclusion

In this work, we reviewed the current state of the art for DL on the network traffic prediction.
We have shown that GRU is well suited for network traffic prediction. We have proposed a data
preprocessing, RNN feeding technique that achieves high predictions within few milliseconds of
computation. The fine tuning process has shown that GRU outperforms classical ML algorithm
and the LSTM model with several orders of magintude.

For future work, network traffic prediction leads to many interesting applications such as
QoS management, resource allocation, and anomaly detection. These applications serve better
quality of Internet service and enhance the actual network infrastructure. Therefore, we believe
that network traffic prediction represents a major key to provide minimum latency for real-time
applications (e.g. augmented reality, autonomous vehicles).
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Chapter 4

Distributed DL Inference in EC scenario

Introduction

We start this chapter by presenting the general scope of the project. Then, we turn our focus
on the deployment of DL task at the edge. Finally, we tackle the modelling phase by including
the performance evaluation of the chosen models.

4.1 General Description

4.1.1 Introduction

Edge Computing has become an important solution to break the bottleneck of emerging
technologies by virtue of its advantages in reducing data transmission, improving service la-
tency and easing cloud computing pressure. The edge computing architecture will become an
important complement to the cloud, even replacement the role of the cloud in some scenarios.

Indeed, the architecture of Edge Computing could be organized as follows:

• End Device: refers to mobile edge devices (e.g. smartphones, smart vehicles, etc) and
IoT devices (e.g. sensors, cameras, accelerators, etc) .

• Edge Device: refers to the edge servers, MEC servers, and generally servers deployed
at the edge of the network.

• Cloud: represents the on-demand availability of computer system resources, especially
data storage and computing power.
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Figure 4.1: Edge Computing Hierarchy [27]

While cloud computing is created for processing computation-intensive tasks, such as DL, it
cannot guarantee the delay requirements throughout the entire process from data generation to
transmission to execution. On the other side, independent processing on end or edge devices is
limited by their computing capability. Therefore, collaborative end-edge-cloud computing for
DL is the most suitable solution to avoid latency while satisfying the required precision.

4.1.2 Problem Statement

Deep neural networks are the state of the art methods for many learning tasks thanks to their
potential to derive better features at each network layer. However, the increased efficiency of
additional layers in a deep neural network comes at the cost of additional latency and energy
consumption in feed forward inference. Thus, it becomes more challenging to deploy them in
the edge with limited resources.

Therefore, large-scale DL models are generally deployed in the cloud while end devices merely
send input data to the cloud and then wait for the DL inference results. Specifically, it cannot
guarantee the delay requirement for real-time services such as real-time object recognition with
strict demands.

To address these issues, DL applications tend to resort to edge computing. In fact, the use
of optimization techniques, distributed DNNs and collaborative inference between IoT devices
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and the cloud becomes a promising solution.

4.1.3 Related Work

End devices (e.g. mobile phones, sensors) were unable to support the computational costs of
DL inference due to their limited resources. To address these issues, a lot of research is underway
to optimize the inference performance on IoT devices [26][27] [28] . The first common approach
is the optimization of DL models at the edge. For instance, network compression is one of the
optimization directions that aims to compress deep networks into tiny models that achieves
a slightly reduced level of accuracy and alleviate considerably the amount of computation
and the inference time [18]. In addition, industrial companies are trying to produce custom
edge hardware that speed up the inference of DL models. Indeed, Coral [20], a company
supported by both Google and TensorFlow, provides custom hardware components devoted for
resource-constrained devices that allow fast ML inference. A second branch of study focuses on
segmenting DL models by pushing portion of the computation from cloud to the edge. Based on
the network bandwidth, the energy state of IoT devices, and the delay requirements of running
applications, the system will decide how much of the computation will be processed on the
cloud server. Actually, it could be classified mainly into two categories 1) Model parallelism
2) Data parallelism. The former tries to distribute the computation among edge nodes by
slicing the DL model into partitions. In fact, Neurosurgeon [21] intelligently decides where
to split the DNN based on preliminary constraints (e.g. network bandwidth, device energy
state, delay requirements). In addition, IONN [23] propose an incremental offloading system
which uploads the DL model to the edge server sequentially. It allows the IoT device to offload
partial DNN execution even before the uploading finishes. Furthermore, S. Teerapittayanon
et al. [24] propose to multiply the output exits by adding secondary branches. The latter
could achieve primarily inference result with slightly lower performance so that they could gain
in delay response and energy consumption. In [25], there is another line of work focuses on
splitting the input data and dividing CNN layers into independent tasks for distribution across
edge devices in order to unburden the computation.

4.1.4 Motivation and Main Contribution

The main contributions of this work is represented as follows:

• Propose an EC scenario for Early Exit of Inference (EEoI) Model.

• Extensive Simulations using virtualization technique show that our distributed framework
achieves a better trade-off between execution delay and model performance.
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4.2 Proposed Work

4.2.1 Model Architecture

In order to reduce the computation time of DL inference, we add early exits branches at
different stages of the network. Hence, this latter enable the inference to exit early from these
additional branches based on a confidence criteria. For instance, as depicted in figure 4.2, an
edge device could give primary inference results at an early stage if the confidence criteria is
satisfied. Otherwise, further computation should take place on the cloud or on the edge server.

Figure 4.2: Example of Early Exit Mechanism for DNN

Actually, EEoI mechanism has been proposed by Branchynet [24]. In fact, this latter is
composed of one single input, and several exit points. The last output could be considered as
the principal network output from which intermediate outputs are added.

4.2.2 Training Phase

This sort of models is barely considered as a neural network models where both Forward
Propagation and Backward Propagation algorithms are still applicable.

For a classification problem, one of the most used loss function is Softmax cross entropy. In
fact, it could be expressed as the following:

L(ŷ, y, θ) = − 1

|C|
∑
c∈C

yc log ŷc (4.1)

where:
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• x: represents the input data.

• y: represents the actual output.

• ŷ: represents the predicted output.

• θ: represents the models parameters including the multiple exit points.

• C: represents the set of classes for the classification problem

The expression of the predicted output for a given ext point n is written as follows:

ŷexitn = Softmax(zexitn) =
exp(zexitn)∑
c∈C exp(zc)

(4.2)

where: zexitn = fexitn(x; θ)

As a result, each exit point has its corresponding loss function. In order to evaluate the
entire EEoI model, we form a joint optimization problem as weighted sum of the loss functions
of each exit point as demonstrated below:

LBranchynet(ŷ, y, θ) =
N∑
n=1

wnL(ŷexitn , y, θ) (4.3)

The training algorithm is composed of:

• Forward Propagation: The data will flow from input layer into the multiple branches
in order to calculate the loss function written in Eq. 4.3.

• Backward Propagation: The back-propagation algorithm computes the partial deriva-
tives of the loss function with respect to all the weights in the EEoI model (including the
intermediate exit points) and then go back through the whole network in order to adjust
the model parameters using gradient descent.

4.2.3 Fast Inference using EEoI

The proposed model is ready for making predictions the moment we make the necessary
steps of modeling and training. Therefore, the classifier starts by making predictions from the
earliest exit point until reaching the main output layer. Once the model predict an output that
has less confidence than a given threshold, the former will pass to the next exit point. This
results in more computation and longer runtime.

The policy which measures the degree of confidence is the entropy. This latter is actually a
measurement of the disorder in a given system. As a result, if the value of the entropy for a
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specific exit point is much higher than a threshold, then this output becomes uncertain and we
pass the verdict to the next exit point for further processing.

Formally, the formula of the entropy for a given exit point is defined as follows:

entropy(y) =
∑
c∈C

yc log yc (4.4)

where:

• y: represents the output vector.

• C: represents the set of classes for the classification problem.

Hence, the algorithm that runs inference for EEoI models could be formalized as follows:

Algorithm 1: Fast Inference of EEoI (x, T)
Result: Predicted Label for the Given Input x
initialization;
for i = 1...N do

zn = fexitn(x) ;
ŷn = softmax(zn) ;
en ← entropy(ŷn) ;
if en ≤ T then

return argmax ŷn ;
end
return argmax ŷn ;

end

As a result, the prediction starts from the earliest exit point to the main branch of the EEoI.
Indeed, the algorithm is trying to minimize the computation process which is directly tied
to the execution time and the energy consumption by identifying the earliest exit point that
satisfies the condition of confidence.

4.2.4 Edge Computing Scenario

The proposed architecture of EEoI could be implemented in an Edge Computing scenario as
depicted in 4.3. For instance, we assigned the exit points as follows:

• Exit 1: The first branch contains the lowest number of layers. Therefore, it has the
minimum computation i.e. minimum latency and efficient energy consumption. As a
result, this configuration is well suited for Edge Devices. Hence, we assign the 1st exit
point to the Edge Device for primary decisions.
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• Exit 2: The second branch has the medium amount of computation because it’s located
in the middle i.e. it has the average number of layers. Hence, we assigned this exit point
to the edge server. Indeed, this connection is well adapted because the ES has an average
of computation resources.

• Exit 3: The main branch which has the maximum number of layers, automatically needs
the most computation resources because of the massive processing it produces. Hence,
we assign this exit point to the Cloud.

Figure 4.3: EEoI in an EC scenario [27]

4.2.5 Distributed Workflow

During inference, the predictions will be made by the earlier exits until the main branch
(last exit point) is reached. As a result, the forecast will be returned by the last exit in the
worst case. To deal with the communication between different nodes, we employ a distributed
workflow to take charge of the message activity and the synchronization as depicted in figure
4.4.
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Figure 4.4: Message Activity at the Edge

4.3 Simulations and Results

4.3.1 Modeling: EEoI Architecture

To manifest the performance of the proposed work, we have conducted several simulations
using the standard CNN model "ResNet 20" [19] on CIFAR10 dataset [14] for object recognition
problem.

As the name is indicated, the ResNet20 model consists of 20 convolutional layers. Indeed,
the location of the exit points in the proposed model is not yet automated. Hence, we should
make several experiments as shown in table 4.1 in order to find out the best positions for the
secondary branches. One interesting finding is that the locations of the exit points influence on
the model accuracy.

Exit 1 Exit 2 Exit 3
ResNet20-A 2 7 20
ResNet20-B 7 13 20

Table 4.1: Different Combinations for the location of ResNet Exits

As far as data is concerned, CIFAR10 dataset consists of 60000 labeled images for 10 classes.
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The former is composed of 50000 samples for training and 10000 samples for test. Explicitly,
the classes are:

• Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.

The input of EEoI model is a color image with a shape of: (32, 32, 3).

The output of EEoI model is an embedding vector that contains the probabilities for each
class with a size of: (1, 10).

4.3.2 Training and Evaluation of the EEoI model

Training the proposed models is carried out by Python Programming Language and Tensor-
Flow 2.3 library. The hyper-parameters that defines the training phase of the proposed models
are presented as follows:

• Epochs : 110

• Batch Size : 32

• Loss Function : Mean Squared Error (MSE)

• Optimizer: Adam

• Loss Function : Categorical Crossentropy

• Metric : Accuracy

The training process was done on Google Colab platform using free access GPU card "Tesla
T4". Indeed, this latter performs inference of ResNet50 model 27 times more faster than CPU
[11]. As a result, the training of each DL model took about 1 hour and 18 minutes which is
considerably fast.

Results have shown that the deeper we make the secondary branches, the better the accuracy
of the entire EEoI model. In fact, the table 4.2 illustrate the results of the training phase of
the proposed models:

Exit 1 Exit 2 Exit 3
Accuracy of ResNet20-A (%) 50.04 60.42 78.83
Accuracy of ResNet20-B (%) 56.8 71.48 84.38

Table 4.2: Performance Results of the proposed models
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(a) ResNet20-A [12] (b) ResNet20-B [13]

Figure 4.5: Curve of the Accuracy on the Test Set

Figures 4.5a, 4.5b depicts the evolution of the accuracy on the test set. Indeed, we apparently
notice the differentiation between the exit points in terms of accuracy during the training
process. Hence, we deduce that the more layers we add , the better performance we achieve. In
addition, we notice that the emplacement of the branches in the EEoI model affects the total
performance. For instance, ResNet20-B achieved a better accuracy than ResNet20-A at the
three exit points. Hence, there is a deeper connection between the location of the exit points
and the model performance which must be given more attention by studying its behaviour. In
contrast, we should always take into account of the trade-off between model performance and
the latency requirements of real-time applications in an Edge Computing environment.

4.3.3 Distributed Inference Implementation

In order to implement the EC scenario of the EEoI model as illustrated in section 4.2.4, we
need to implement the three-tier architecture i.e. cloud servers, edge servers and edge devices.
Hence, due the COVID-19 Coronavirus Pandemic, we decide to make a virtualization technique
instead of a real testbed by providing a set of virtual nodes built on the top of the workstation
that make up the three-tier architecture.

In fact, we have implemented the scenario using "Docker" open source platform [15] to
containerize the applications on virtual nodes. Thanks to this latter, we could create containers
that process application packaging to deliver edge computing applications to the network.
Indeed, a container is a running process that embodies additional functionalities to keep it
separated from the host and the rest of containers. In addition, Docker provide ways to control
the runtime options i.e. Memory, CPU. As a result of that, we have built three containers
that represents the EC environment and we have set the runtime options as shown in table 4.3
below:
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Edge Device Edge Server Cloud Server
Memory (GB) 1 32 32
CPU (%) 100 100 100

Table 4.3: Runtime Options of the Three-Tier Architecture

As far as the host machine is concerned, it is about a laptop that is equipped with 32 GB
of RAM and with Intel Processor 3.4 GHz, and runs on Ubuntu 18.04. So that to limit the
resources for the edge device known to be a resource-constrained device (e.g. sensors, cameras,
etc.), we have only varied the RAM memory from 512 MB to 3 GB in order to perceive the
variation in latency of the applications. In contrast, the docker containers could consume from
the host machine as much as they could in terms of CPU cycles. In fact, the variation of CPU
cycles for Docker containers induce an abnormal behaviour. This is due to intervention of the
operating system which consume likewise from the CPU. As a consequence, the virtualization
becomes inaccurate.

The last brick in this implementation is the communication part between the nodes. Indeed,
Docker provides a powerful feature that enables the connection between different containers
using a specific network. In our case, we have used the bridge network provided by Docker as
depicted in figure 4.6. The latter uses a software bridge network, which is a link layer that
dispatch traffic between network segments, in order to enable communication between different
Docker containers. Thus, we have used ZeroMQ [17] to pass messages and synchronizations
between different Docker containers using the bridge network channels. In fact, ZeroMQ is an
asynchronous messaging library that focuses on developing distributed and concurrent applica-
tions. Furthermore, we have used TCP transport layer for data transmission.

Figure 4.6: EC Virtualization using Docker Platform
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4.3.4 Performance Analysis of the distributed Inference

We deploy the distributed inference of ResNet20-B model using Docker to evaluate the perfor-
mance of EEoI model. Since the entropy threshold T directly affects on the model performance,
as well as on the exit point that will perform the inference, we evaluate the performance of
ResNet20-B under different threshold values.

Figure 4.7: Performance Results for Distributed Inference using ResNet20-B model

Fig. 4.7 depicts the influence of the entropy threshold on both the accuracy (i.e. model
performance) and the inference runtime. In fact, we can see that both of the accuracy and the
runtime become lower as the entropy threshold increases. Meaning that the higher threshold
leads to a decreasing in the inference time while the accuracy is deteriorating. Fig. 4.8 shows
much further the reduction of the accuracy while the entropy threshold rises. In fact, we could
understand the degradation of the model performance by contemplating on Fig. 4.9. The
explanation for the decrease in accuracy is that the samples are getting less and less offloaded
to both the edge server and the cloud server. Therefore, the prediction becomes made by the
first exit point allocated to the edge device, where we have the minimum number of layers i.e.
the minimum computation, which leads to a minimum latency and a minimum accuracy by
itself.

For instance, if we set the entropy threshold to its maximum value (T = 1), we get the
minimum values for both the accuracy and the inference time. Hence, we have improved the
latency of the real-time application by diminishing the processing at the cost of the model
performance. In contrast, if we set the entropy threshold to its minimum (T = 10−15), we
get the maximum values for both the accuracy and the inference time. As a result, we have
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improved the model performance by augmenting the processing at the cost of the inference
time.

Figure 4.8: Effect of The Threshold on the Accuracy

Figure 4.9: Effect of the The Threshold on the Exited Samples
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Furthermore, we have varied the RAM memory for edge device from 512MB to 3GB in order
to observe the impact of constraining the resources on the inference time. Indeed, Fig. 4.10
illustrates in advance the increase of the execution time while we are limiting the resources for
the edge device. Thus, we should be aware of the consequences on the latency requirement for
real-time applications when dealing with resource-constrained devices known as IoT devices.
In fact, the modeling of the EEoI model, such as the selection of optimized Hyper-Parameters
using automated algorithms, becomes the most important element in order to obtain the well-
adapted distributed inference model for real-time applications (e.g. AR applications).

Figure 4.10: Effect of The Resource Limitation on the Model Runtime Under Different Thresh-
old

4.4 Conclusion

For an EC environment, we present a distributed inference of DL models. Preliminary im-
plementation and evaluations shows that the EEoI framework manages to control the trade-off
between model performance and execution latency by varying the entropy threshold. Inter-
esting findings demonstrate that the more constrained-resource device we have, the more we
should be sensible about the DL model size, as well as the location of secondary exit points.

Future works reveals an implementation of real testbed in order to observe the influence of
varying the network bandwidth between edge devices and the cloud on the inference latency.
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Chapter 5

Computation Offloading for multi-user
Mobile EC

5.1 General Description

5.1.1 Problem Statement

The rapid growth of mobile internet services has led to a wide variety of computation intensive
applications (e.g. augmented reality, object recognition). Indeed, there are sensible applica-
tions that require a short latency for the execution. On the other hand, end devices such as
mobile users or IoT devices have limited energy resources. As a result, they cannot handle this
enormous amount of processing locally. Thus, Edge Computing attempts to resolve these issues
of delay requirements and energy consumption by bringing the cloud capabilities closer to the
end user by deploying edge servers. It is in this line of research, that we aim to implement an
efficient computation offloading and resource allocation for mobile edge computing.

5.1.2 Related Work

Sensible decisions should be made whether offload the task to a near edge server or perform
the computation locally. Hence, several works have been done in this branch of research. For
instance, L. Huang et al. [50] propose a system that optimizes the offloading decisions and
the resource allocation in an edge computing environment. In fact, they optimize offloading
decisions using Deep Reinforcement Learning (DRL) while adopting convex optimization for
the allocation of network resources. Furthermore, X. Feng et al. [51] presents a joint task
offloading and resource allocation optimization method in EC environment using DQN. The
overall offloading cost is evaluated based on energy consumption of end devices and the delay
of tasks execution. In addition, X. Liu et al. [52] propose to leverage a distributed Q-learning
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algorithm by allowing each end device to control the offloading decision on its own. Based on the
channel state and the remaining resources, the former tries to optimize the energy consumption
and the execution delay of the remaining tasks.

5.1.3 Motivation and Main Contribution

In the previous works, the implementation of a real testbed or virtual simulation has rarely
been considered for offloading decision and resource allocation optimization in EC environment.
Recently, P. Gawłowicz et al. [49] is presenting a new framework ns3-gym for RL research in
networking field by interconnecting the network simulator ns-3 and the RL toolkit "OpenAI
Gym" together. Thus, ns3-gym becomes the benchmark for research related to applications of
RL in networking. For that occasion, we propose to leverage offloading task optimization using
DRL paradigm by exploiting the new framework ns3-gym.

The major contributions of this work are:

• Proposing a joint optimization problem for offloading decision and resource allocation of
edge devices in a wireless EC environment.

• Solving the optimization problem using Deep Q-Network (DQN).

• Simulation of the EC scenario using ns-3 network simulator. In fact, the RL agent inter-
acts in real-time with ns-3 environment using the framework ns3-gym.

5.2 Scenario Description

5.2.1 System Model

As illustrated in fig. 5.1, the scenario consists of an IoT network withN end devices connected
to an Access Point (AP) via wireless communications. The AP aggregates the data from end
devices and processes it using its equipped edge server. Each end device has M independent
tasks to be completed. As a result, offloading their tasks could improve the computation
experience in terms of task execution latency and energy consumption.
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Figure 5.1: System Model

To model the task, we use Sinnm to denote the input data size of the mth task for the nth user.
Likewise, we denote Soutnm as the output data size of the mth task for the nth user. Furthermore,
each end device n could decide whether to offload or execute locally a particular task m. As
a result, we denote by xnm the binary decision for offloading or local execution. For instance,
the offloading occurs when xnm is set to 1. In contrast, the task will be executed locally if xnm
has been set to 0.

When end devices offload their tasks to the edge server. Energy consumption includes two
parts for both transmission and receiving. Hence, we denote by Et

nm and Er
nm respectively, the

energy consumption for both transmitting and receiving. The total energy consumed for end
device n when offloading the task m is denoted by Eoff

nm . On the other side, Eloc
nm represents the

energy consumed by the end device n while performing the task m locally.

As far as the delay is concerned, we denote by Cup
n and Cdo

n respectively, the allocated
bandwidth for user n for transmission and receiving the task m. As a result, the uplink
transmission delay for offloading could be expressed as follows T upnm = Sin

nm

Cup
n
. Contrariwise, the

downlink transmission delay for local execution could be expressed as follows: T donm = Sout
nm

Cdo
n
. In

addition, the computation latency at the edge server is denoted by T edgenm . As a result, the
total delay for offloading the task m for the user n could be formalized as follow: T offnm =

xnm(T
edge
nm + T upnm + T donm). In contrast, we denote by T locnm the computation delay for executing

the task n for the user m.
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5.2.2 Optimization Problem

The problem is formulated with the aim of minimizing both the total delay and the energy
consumption of end devices in order to complete the execution of the tasks, by jointly optimizing
the offloading decisions for each user n and the allocated bandwidth for transmission and
reception.

In this work, we propose to design an optimal task offloading scheme to minimize the task
execution latency and the energy consumption of end devices. Hence, the optimization problem
is formulated as follow:

min
w

N∑
n=1

[
M∑
m=1

[Eloc
nm(1− xnm) + Eoff

nm xnm + wn(xnmT
off
nm + (1− xnm)T locnm)]]

s.t.
N∑
n=1

Cup
n ≤ Cup,max

N∑
n=1

Cdo
n ≤ Cdo,max

Cup
n , C

do
n ≥ 0, ∀n

xnm ∈ {0, 1}

(5.1)

The parameter wn represents the weight between energy consumption and the execution delay.
In addition, the constraints of the optimization problem describe the limitations of both the
binary decision variables and the allocated bandwidths for transmission and reception.

In fact, we notice that the proposed optimization problem consists of a mixed non linear
programming problem, which is typically an NP-hard problem.

5.3 RL Approach

5.3.1 Motivation

The aim of this work is to optimize the joint task offloading 5.1. Since the DRL have shown
high efficiency in solving complex problems, it would be interesting to solve the optimization
problem with DRL especially when DRL algorithms provides a promising solution to handle
complicated decision-making process. Specifically, we have inspired by the success of modelling
an optimal action-state Q-function with Deep Neural Network (DNN). As a result, we adopt a
Deep Q-Network (DQN) algorithm to address this optimization problem.
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5.3.2 DQN Specifications

In order to implement DQN to solve our optimization problem 5.1, we need to specify the
algorithm components i.e. the action signal, the state, and the reward function. Hence, we
describe these components in the following subsections:

5.3.2.1 State

To interpret our optimization problem as a DQN problem, we define the system state at time
epoch t as follow:

s(t) = {x11(t), x12(t), ..., xnm(t), ..., xNM(t), Cup
1 , ..., Cup

N (t), Cdo
1 (t), ..., Cdo

N (t)} (5.2)

In fact, the state encapsulates the offloading decisions and the allocated bandwidth for trans-
mission and reception for all the users. As a result, the system state consists of (NM + 2N)

elements.

5.3.2.2 Action

The action allows the agent to interact with the environment by selecting decisions at
each time epoch. Thus, we define the action as an index selection that induces a variation
between two different states. We use a variable ν to denote the selection of index where
ν = 1, 2, ..., NM + 4N . As a result, we denote by a(t) the action at time epoch t, and it could
formalized as follow:

a(t) = {aν(t)} = {a1(t), a2(t), ..., aNM+4N(t)} (5.3)

In fact, we took the corresponding decision based on the element index in the action vector.
Hence, we have the following cases regarding each element of the action:

• Case 1: if ν ∈ [1, NM ], then the corresponding variation will be on the offloading decision
variable xnm(t). More formally, we have the following treatment:

n = ν
N

m = ν mod M

if aν(t) = 1 then
xnm(t) = 1− xnm(t)

else
xnm(t) = xnm(t)

end if

• Case 2: if ν ∈ [NM + 1, NM +N ], then the corresponding variation will be an increase
in the bandwidth allocated for transmission Cup

n (t). Formally, we have the following
process:
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n = ν −NM
if aν(t) = 1 then
Cup
n (t) = Cup

n (t) + δCup

else
Cup
n (t) = Cup

n (t)

end if

• Case 3: if ν ∈ [NM + N + 1, NM + 2N ], then the corresponding variation will be
a decrease on the allocated bandwidth for transmission Cup

n (t). Formally, we have the
following process:

n = ν −NM −N
if aν(t) = 1 then
Cup
n (t) = Cup

n (t)− δCup

else
Cup
n (t) = Cup

n (t)

end if

• Case 4: if ν ∈ [NM + 2N + 1, NM + 3N ], then the corresponding variation will be an
increase on the allocated bandwidth for reception Cdo

n (t). Formally, we have the following
process:

n = ν −NM − 2N

if aν(t) = 1 then
Cdo
n (t) = Cdo

n (t) + δCdo

else
Cdo
n (t) = Cdo

n (t)

end if

• Case 5: if ν ∈ [NM + 3N + 1, NM + 4N ], then the corresponding variation will be a
decrease on the allocated bandwidth for reception Cdo

n (t). Formally, we have the following
process:

n = ν −NM − 3N

if aν(t) = 1 then
Cdo
n (t) = Cdo

n (t)− δCdo

else
Cdo
n (t) = Cdo

n (t)

end if

5.3.2.3 Reward Function

Based on the current state and the chosen action, we could determine the reward signal that
the environment should send to the agent. Specifically, we define the function J(t) as the value
of the objective function for our optimization problem 5.1. Indeed, by extracting the binary
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variables for the offloading decision and the allocated bandwidth for transmission and reception,
we denote by Js(t)(t) = J{xnm(t)},{Cup

n (t)},{Cdo
n (t)}(t) the cost function that we aim to be minimize.

The agent is supposed to minimize the cost function J(t) during the interaction by attempting
to choose the optimal decisions. Therefore, the agent receive a reward when the cost function
is reduced. In contrast, when the agent increases the cost function, the environment attributes
a negative reward, as if it is a retribution. More formally, we define the reward signal as follow:

if Js(t+1)(t+ 1) < Js(t)(t) then
r(s(t),a(t),s(t+1))(t) = 1

else if Js(t+1)(t+ 1) > Js(t)(t) then
r(s(t),a(t),s(t+1))(t) = −1

else if Js(t+1)(t+ 1) = Js(t)(t) then
r(s(t),a(t),s(t+1))(t) = 0

end if

5.3.3 DQN Algorithm

We present in the section the DQN algorithm that will serve to optimize the agent decisions
in order to minimize the execution latency of the tasks and the energy consumption of IoT
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devices.

Algorithm 2: Proposed DQN Algorithm to Solve the Optimization Problem

Initialize the evaluation and target Q network parameters with w;
for episode = 1 to M do

Initialize s1(t) ;
for t = 1 to T do

Following ε-Greedy policy, select at according to the uniform distribution within
[0, 1] ;
if p < ε then

at = argmaxaQ
pred(s(t), a, w) ;

else
Select a random action at with probability ε ;

end
Calculate Js(t)(t) according to 5.1 ;
Observe the reward r(t) and the next state s(t+ 1) ;
Calculate the target Q-value Qtarget:
Qtarget = r(t) + γmaxa′ Q

pred(s(t+ 1), a′, w′) ;
Perform Gradient Descent step to minimize (Qtarget −Qpred(s(t), a(t), w))2;
Update the weights for the evaluation network;

end
end

5.4 Simulations and Results

5.4.1 Software Environment

• ns-3 Network Simulator: ns-3 is a discrete-event network simulator for networking
systems, developed primarily for research and educational use [47]. It is an open source
simulator developed in C++ using object oriented programming. In essence, ns-3 at-
tempts to mimic the reality as closely as possible. It actually uses several core concepts
and abstractions that map efficiently the way computers and network are designed. For
instance, a Node is a key entity connected to the network. It is the a container for ap-
plications, protocols and network devices. An application represent a user program that
generates packet flows. In addition, a protocol represents a logic of network and trans-
port level protocols e.g. TCP, OpenFlow. A network device is an entity connected to
the channel that is the basic communication sub-network abstraction e.g. Wifi, CSMA,
LTE, etc. Furthermore, ns-3 allows to model the energy consumption and the mobility
of different types of Node entity.

• OpenAI Gym: OpenAI Gym [48] is a framework for developing and comparing rein-
forcement learning algorithms. It provides simple API that unifies interactions between
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RL and the environment. Specifically, the main purpose of the Gym framework is to
provide a standardized interface that allows access to the state and to execute actions in
the environment.

Therefore, we have used ns-3 to simulate the environment while Gym was used to imple-
ment the DQN agent. In addition, we resort to a recent work [49] which enables real-time
communication between ns-3 and Gym framework using ZMQ sockets [17].

5.4.2 Implementation Details

In order to simulate the EC scenario, we have chosen the following characteristics of ns-3
environment:

• Communication Between Access Point (AP) and End Devices: We have chosen
the communication to be a wireless communication. Specifically, we have used Wifi
communication.

• Communication Between AP and Edge Server: We have chosen a wired commu-
nication named Point-to-Point Communication in ns-3 simulator.

In our primary simulation, we set the number of end devices N = 6 and the number of
tasks for each end device M = 2. In addition, to simplify the simulation and avoid the
ambiguity in studying Offloading tasks in EC environment, we have made some assumptions
and simplifications related to the system parameters:

• The cost function J becomes only a function of the execution time of tasks.

• We assume that the allocated bandwidth for both transmission and reception are fixed
variables. Hence, we remove the allocated bandwidth from the action vector.

• In order to simulate the execution of tasks for end devices, we decided to send a fixed
number of packets to local nodes as if it is a computation.

• We suppose that the local execution is less heavier than offloading to the edge server.

5.4.3 Performance Analysis

In fig. 5.2, we plot different episodes during the training of the agent. The results shows
that the agent could not minimize the cost function. In fact, we observe that the cost function
oscillates at a local minimum. This primary simulation motivates us to carry out further
implementations in order to explain the behaviour of the DQN agent.
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Figure 5.2: Convergence Performance

In the second run, we have tried to change the reward function. In fact, the reward function
represents the signal which the agent receives while performing an action in a given sate. As
a result, the reward function plays a key role for the agent to understand the environment.
Therefore, we have modified the reward function as follows:

if Js(t+1)(t+ 1) < Js(t)(t) then
r(s(t),a(t),s(t+1))(t) = 1

else if Js(t+1)(t+ 1) > Js(t)(t) then
r(s(t),a(t),s(t+1))(t) = −1

else if Js(t+1)(t+ 1) = Js(t)(t) and Js(t)(t) < ε then
r(s(t),a(t),s(t+1))(t) = +2

else if Js(t+1)(t+ 1) = Js(t)(t) and Js(t)(t) > ε then
r(s(t),a(t),s(t+1))(t) = −2

end if

In order to prevent the agent from falling into local minimums as if it was the case in 5.2,
we assign a negative reward when the cost function stabilizes at a local minimum. In contrast,
we send a positive reward to the agent in case we have a stabilization in a global minimum.

Fig. 5.3 illustrate the impact of the reward function modification on the convergence perfor-
mance of the agent. Indeed, we observe that the DQN agent has achieved a good performance
in minimizing the cost function. In episode 9, we notice that the agent is trying to stabilize the
cost function at the global minimum until he reaches it in the episode 19. Hence, we deduce an
interesting finding from these simulations that the DQN components, i.e. state, action, reward
function, have an enormous impact on the agent performance.
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Figure 5.3: Convergence Performance using a second Reward Function

5.5 Conclusion

In this work, we investigate DRL for task offloading and bandwidth allocation using multiple
simulations on ns-3 network simulator. We formulate an optimization problem with the objec-
tive of minimizing the overall cost, including the execution delay of the running applications
and the energy consumption of end devices. Primary results stimulate advanced simulations
by using more features, i.e adding the energy model to end devices, implementing real tasks
instead of sending packets.
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Conclusion

This work presents three relevant applications that serve end devices with better computing
power, energy consumption and minimum latency for sensitive real-time applications.

First, network traffic prediction is the engine for many interesting applications in networking
point of view such as resource allocation and QoS management. In fact, Recurrent Neural Net-
work (RNN) have shown high capability to forecast network traffic with a promising execution
time.

Second, we have leveraged Edge Computing paradigm which works in tandem with Cloud
Computing to deliver real-time applications for end devices with minimum latency and efficient
energy consumption. In fact, we have proposed a distributed DL inference that controls the
trade-off between the accuracy of the prediction and execution latency by deciding where the
execution will take place. Actually, the model performance and the latency of application are
two key knobs for an efficient DL inference at the edge. This line of research is still ongoing.
For instance, a possible enhancement for the proposed framework is to intervene reinforcement
learning in order to automate the control of these key knobs (i.e. DL inference accuracy and
the multiple constraints of networking, communication and energy consumption).

Finally, we have investigated Deep Reinforcement Learning (DRL) for optimizing offloading
decision and resource allocation for multiple mobile end users. The offloading decisions have
been taken centrally. Therefore, future works reveals the need to extend this framework by im-
plementing a distributed framework by allowing each end device to take the offloading decision
on its own instead of a centralized way. Additionally, more complex scenarios could be designed
by adding features such as multiplying the number of edge servers. As a result, the mobile user
encounter the decision of which edge server he chooses in order to perform his tasks.
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