
Lightweight and Resilient Signatures for Cloud-Assisted Embedded IoT Systems

Saif E. Nouma , and Attila A. Yavuz

Abstract—Digital signatures provide scalable authentication
with non-repudiation and are vital tools for the Internet of
Things (IoT). Many IoT applications harbor vast quantities
of resource-limited devices often used with cloud computing.
However, key compromises (e.g., physical, malware) pose a
significant threat to IoTs due to increased attack vectors and open
operational environments. Forward security and distributed key
management are critical breach-resilient countermeasures to mit-
igate such threats. Yet forward-secure signatures are exorbitantly
costly for low-end IoTs, while cloud-assisted approaches suffer
from centrality or non-colluding semi-honest servers. In this
work, we create two novel digital signatures called Lightweight
and Resilient Signatures with Hardware Assistance (LRSHA) and
its Forward-secure version (FLRSHA). They offer a near-optimally
efficient signing with small keys and signature sizes. We syner-
gize various design strategies, such as commitment separation
to eliminate costly signing operations and hardware-assisted
distributed servers to enable breach-resilient verification. Our
schemes achieve magnitudes of faster forward-secure signing
and compact key/signature sizes without suffering from strong
security assumptions (non-colluding, central servers) or a heavy
burden on the verifier (extreme storage, computation). We for-
mally prove the security of our schemes and validate their
performance with full-fledged open-source implementations on
both commodity hardware and 8-bit AVR microcontrollers.

Index Terms—Digital signatures; Internet of Things (IoT); for-
ward security; lightweight cryptography; authentication.

1. Introduction

The Internet of Things (IoT) is a fast-growing networked

system that comprises of vast number of resource-constrained

devices (e.g., RFID tags, sensors) [1]. The IoT applications

involve domains like health, economy, personal, and military.

As a result, the security of IoT devices is critical to achiev-

ing trustworthy cyber infrastructures. It becomes even more

important when cloud servers are becoming the main resort

of the sensitive data collected by IoT devices. The data and

its surrounding security services are offloaded to the cloud-

enabled ecosystems through emerging data analytic applica-

tions. For example, digital twins aim to conceive virtual repli-

cas of cyber-physical systems (e.g., humans, institutions) [2]

by monitoring the physical entities via IoT equipment (e.g.,

cameras, sensors, wearable). Healthcare digital twins deploy

various wearables on patients to model and analyze medical

This work is supported by Cisco Research Award (220159) and National Sci-
ence Foundation CAREER Award CNS (1917627). Saif E. Nouma and Attila
A. Yavuz are with the Department of Computer Science, University of South
Florida, Tampa, 33620, Florida, USA (e-mail: saifeddinenouma@usf.edu, at-
tilaayavuz@usf.edu)

functions with IoT devices. For instance, resource-limited IoT

devices (e.g., pacemakers) send electrical pulses to correct a

slow heartbeat rate. Additionally, it enables professionals to

monitor the patient’s health status to prevent heart failures

[3]. Some of these digital twin applications and their security

services use cloud assistance [2].

Authentication and integrity are vital requirements to guar-

antee trustworthy IoT-supported systems [4]–[6]. Yet, it is a

challenging task to offer these security services efficiently due

to resource limitations, scalability issues, and advanced secu-

rity requirements against system breaches [7]. Below, we out-

line some of the highly desirable properties that an ideal authen-

tication and integrity mechanism must achieve for embedded

IoT systems:

• Lightweight and scalable signing: The vast majority of the

embedded IoT devices are resource-limited (e.g., memory, pro-

cessing, battery) [7]. Hence, the authentication and integrity

mechanisms must be lightweight to respect these limitations.

Symmetric-key authentication (e.g., HMAC [8]) is computation-

ally efficient. However, due to (pairwise) key distribution and

management hurdles, they may not be scalable to large-scale

and dynamic IoT applications. Moreover, it does not offer pub-

lic verifiability and non-repudiation, which are crucial features

for dispute resolution. Digital signatures offer scalable and

public verifiable authentication via public key infrastructures,

which makes them ideal for large-scale IoTs. Yet, standard

signatures are costly for low-end IoT devices [9]. The vast

majority of signatures require Expensive Operations (ExpOps)

such as modular exponentiation [10], Elliptic Curve (EC) scalar

multiplication [11] or lattice-operations [12], which are shown

to be energy and computation intensive for embedded IoTs [13].

Lightweight digital signatures [9], [11], [14] aim to minimize

ExpOps to permit efficient signing. However, this generally

comes at the cost of limits on the number of signatures [15],

excessively large public keys [16], heavy memory consumption

[17], weakened security [18] or extra assumptions [15], [19].

The lightweight signing becomes especially challenging when

additional security features such as compromise-resiliency and

frequent signing (e.g., as in digital twins) are needed.

• Key compromise-resiliency at IoT device: IoT devices are

vulnerable to key compromises via malware or physical ac-

cess (like a smart-watch left in a public place or a medical

handheld device left unattended in a hospital) [20]. Forward-

security mitigates the impact of key compromises via key

evolution techniques [21], [22]. However, forward-secure sig-

natures are significantly costlier than their conventional coun-

terparts. The signing may involve multiple ExpOps with in-

creased key/signature sizes. Even the optimal generic forward-

secure transformations incur a logarithmic factor of cost ex-

pansion (excluding hidden constants) [23]. Hence, it is an

extremely difficult task to create forward-secure signatures

that are lightweight for the signer without putting exorbitant

ar
X

iv
:2

40
9.

13
93

7v
1

 [
cs

.C
R

]
 2

0
Se

p
20

24

https://orcid.org/0000-0001-8043-1684
https://orcid.org/0000-0002-8680-9307

overhead on the verifier [24].

• Compact and resilient operations at IoT device: (i) The sig-

nature/key sizes must be small to respect memory constraints

of embedded devices. (ii) ExpOps require complex arithmetics,

which increase the code size and memory footprint. Moreover,

they are shown to be more vulnerable to side-channel attacks

than simple arithmetic and hash calls [25]. Thus, it is desir-

able to limit signing operations to only basic arithmetics and

hashing to avoid these hurdles. (iii) Low-end IoT devices cannot

assume a trusted execution environment, thus the signing logic

should not require such special hardware (e.g., unlike [26]).

• Resiliency at the Cloud-Assistance Services: Many lightweight

signatures leverage cloud-assistance to attain efficiency and/or

advanced security [13], [15], [19], [27]–[29]. However, the im-

pacts of such cloud assistance must be assessed carefully.

(i) The centralized security assistance is prone to a single

point of failure, key escrow, and compromise problems. A

distributed architecture can mitigate such risks provided that

it does not impede the signer’s efficiency. (ii) Decentralized

signature assistance assumes semi-honest and collusion-risk-

free parties, which may not hold in practice. Moreover, the

lack of a cheating detection mechanism (e.g., a party injecting

incorrect values) puts the trust at risk. Therefore, it is necessary

to provide resiliency not only at the IoT but also at the cloud-

assistance side to ensure a higher level of trust and security.

There is a significant gap in the state-of-the-art to achieve

all these properties simultaneously. Below, we discuss the most

relevant state-of-art digital signatures to our work and then

outline the desirable properties of proposed schemes.

1.1. Related Work

We now summarize the state-of-the-art techniques that are

most relevant to work. Our proposed schemes are lightweight

forward-secure digital signatures for embedded IoTs with

breach-resilient and decentralized verifier cloud-assistance.

Hence, we select our counterparts through the lenses of these

properties. Given that it is not possible to compare our schemes

with every digital signature, we first focus on a broad class

of seminal signatures. Later, we capture forward-secure signa-

tures and lightweight constructions relying on special assump-

tions. Finally, we discuss signatures with advanced properties

that may receive benefit from our schemes or vice versa.

I) Prominent Class of Digital Signatures: Below, we outline

some of the most foundational signatures used in IoTs (and

compare our schemes with them in Sec. 6).

• Elliptic Curve (EC)-based Signatures: These are currently

considered the most suitable class of schemes for resource-

limited devices. ECDSA [30] and Ed25519 [31] are examples

of widely experimented schemes on IoT settings. Despite their

merits, they still incur at least one EC scalar multiplication at

the signer (e.g., [11], [14], [32]). It has been shown that even

the most efficient EC signatures can be costly for low-end IoT

settings (e.g., 8-bit MCUs), with a substantial impact on battery

life (e.g., [16], [33]). In our experiments, we re-confirm this fact

and then demonstrate that the overhead becomes impractical

for low-end devices when advanced features such as forward

security are considered. We further demonstrate the significant

performance difference that lightweight signatures can offer

over signatures relying on EC scalar multiplications in signing.

• Pairing-based Signatures: They offer some of the most com-

pact signature and key sizes along with (cross-user) aggrega-

tion capability. Seminal pairing-based schemes like BLS [34]

have been used in various applications such as secure routing

[35], logging [21], blockchains [36], and IoTs [28]. Despite the

compactness they offer, the signature generation uses map-to-

point and scalar multiplication, which are significantly slower

than EC-based schemes. For example, we have shown that

BLS signing is 18× slower than Ed25519, while other studies

confirm performance hurdles of BLS on performance-aware

networked settings [37]. Hence, we will focus on outperforming

EC-based signatures in our work.

• RSA Signatures: It achieves a fast verification but highly

expensive signing and large key sizes. It is even costlier than

BLS-based signatures with larger keys, and therefore is not an

ideal choice for our applications [10].

II) Signatures with Additional Properties and Assumptions:

• Offline/Online (OO) and Pre-Computed Signatures: These

schemes shift expensive signing operations (e.g., EC-scalar

multiplication) to an offline phase, thereby permitting faster

signing but with extra storage and transmission. The generic

OO schemes involve one-time signatures (e.g., HORS [38]) or

special hashes (e.g., [39]), which are expensive for low-end

devices. Some signatures such as ECDSA [30] and Schnorr

[40] naturally permit commitments to be pre-computed, but

require the signer to store a pre-computed token per message

(i.e., linear storage overhead). Moreover, after depletion,

the signer must re-generate these tokens. Due to these

memory/bandwidth hurdles and replenishment costs, such

OO approaches are not suitable for our target applications.

The BPV techniques [41] permit a signer to store a pre-

computed table, from which commitments can be derived with

only EC-scalar additions instead of an EC-scalar multiplication.

It has been extensively used in low-end IoTs [19], [42], [43].

However, recent attacks [44] on BPV demands substantially

larger security parameters, which reduces performance gains.

There are also new pre-computation methods (e.g., [45]) that

speed up RSA and BLS, which require a large table storage

and scalar additions (for BLS). A different line of work elim-

inates the commitment overhead from signer by relying on a

pre-defined set of one-time public keys at verifier (e..g, [16],

[46], [47]). Although signer efficient, they limit the number of

signatures to be computed and incur a large public key storage.

• Lightweight Signatures with Cloud Assistance: Cloud-assi-

stance is used to elevate security in various protocols [2],

[27]–[29]. Various strategies are used to attain lightweight

signatures with cloud assistance. In one line, a set of distributed

servers supply verifiers with one-time commitments (e.g., [13],

[19]). EC-based schemes [19] achieve high computational effi-

ciency but with large keys due to BPV. Moreover, the servers

are assumed to be semi-honest and non-colluding, without an

explicit authentication on the commitment. A recent approach

is to delegate the generation of commitments and public keys

to a Trusted Execution Environment (TEE)-supported cloud

server [15]. It offers a lightweight signing and small key sizes

but with large signatures. This cloud assistance relies on a

centralized TEE architecture, therefore is prone to key escrow

and central root of trust vulnerabilities (as discussed in [48]).

III) Forward-secure (FS) Digital Signatures: Seminal FS signa-

tures such as Bellare-Miner [49], Itkis-Reyzin [50], and Abdalla-

Reyzin [51] led to several asymptotically efficient designs (e.g.,

[21], [22]). However, they all require (generally multiple) Ex-

pOps at the signing with large signatures, and therefore are not

suitable for our use cases. Another alternative is to transform

efficient EC-based signatures into FS with generic transforma-

tions (e.g., MMM [23]). MMM is an asymptotically optimal

scheme that can transform any signature into an FS variant.

However, it requires multiple calls to the underlying signing

and key generation, leading to highly costly operations [22].

Akin to MMM, FS signatures such as XMSS [52] (and signer-

efficient variants [53]) also rely on tree structures to attain

multiple-time signatures from one-time hash-based schemes.

However, as shown in our experiments, they are still mag-

nitudes costlier than our constructions. Finally, to transform

one-time signatures with multiple-time FS schemes, there are

FS OO techniques (e.g., [24]) and cloud-assisted approaches

(e.g., [13], [15]). Despite their signing efficiency, they inherit

limited usability, large public keys, and/or risks of single-point

failure, as discussed above. Hence, there is a crucial need for

FS signatures that avoid ExpOps without strict limits on the

number of signatures or heavy one-time public key storage.

IV) Alternative Signatures with Potential Extensions and Sup-
port: Identity-based and certificateless signatures [54] mitigate

the overhead of certificate transmission and verification. They

have been used in various IoT settings (e.g., [11], [28], [55]).

Despite their merits, they still require ExpOp(s) on the signer.

It is possible to extend our constructions into certificateless

settings via proper transformations (e.g., [56]).

Puncturable digital signatures (e.g., [57]) involve key update

strategies and can be built from ID-based signatures (e.g., [57]).

Multi-signatures (e.g., [58]) and threshold signatures (e.g., [59],

[60]) can also be extended into forward-secure settings. How-

ever, our schemes are signer non-interactive, single-signer, and

signer-optimal constructions, and therefore those signatures

are not their counterparts. Finally, besides digital signatures,

there are myriad other authentication techniques for IoTs, in-

cluding but not limited to, multi-factor and/or user authenti-

cation (e.g., [29]). These works are complementary to ours. Our

proposed schemes can serve as a building block when used as

a signature primitive. Note that, we strictly aim to guarantee

the public verifiability and non-repudiation of the embedded

device by itself, but only let the cloud support the verification.

Hence, the cloud-assisted authentication methods that defer

the signature generation to the cloud (e.g., [61]) are also out of

our scope. Finally, the protocols that offer confidentiality and

availability for IoTs are out of our scope.

1.2. Our Contribution and Desirable Properties

In this paper, we proposed two new digital signatures

called Lightweight and Resilient Signatures with Hardware Assis-
tance (LRSHA) and its forward-secure version as Forward-secure
LRSHA (FLRSHA). Our schemes provide lightweight signing

and near-optimally efficient forward security with small keys

and signature sizes. They achieve this without relying on

strong security assumptions (such as non-colluding or central

servers) or imposing heavy overhead on the verifier (like linear

public key storage or extreme computation overhead). Our

methods introduce and blend different design strategies in a

unique manner to achieve these advanced features at the same

time. Some key strategies include using the commitment sepa-

ration method to eliminate expensive commitment generations

and EC operations from the signer and utilizing hardware-

assisted distributed servers to provide robust and dependable

verification support at the verifier. We give the main idea and

details of our schemes in Section 4 and outline their desirable

properties further as below:

• High Signing Computational Efficiency: LRSHA and

FLRSHA provide a near-optimal signature generation with

compact key sizes, thanks to the elimination of ExpOps from

signing. LRSHA outperform their counterparts by being 46×
and 4× faster than Ed25519 [31] and its most signer-efficient

counterpart HASES [15] on an 8-bit AVR ATMega2560

microcontroller. The signing of FLRSHA is also faster than the

forward-secure HASES, with a magnitude smaller signature

sizes and without the central root of trust and key escrow

issues. The private key size of LRSHA is several magnitudes

smaller than its fastest counterparts (e.g., [19], [45], [62]) that

rely on pre-computed tables.

• Forward Security and Tighter Reduction: (i) Forward Secu-
rity: As discussed in Section 1.1, FS signatures are generally

significantly more expensive than their plain variants and not

suitable for low-end devices. To the best of our knowledge,

FLRSHA is one of the most efficient forward-secure signatures

in the literature, whose cost is almost as efficient as few sym-

metric MAC calls, with a compact signature and key sizes.

These properties make it several magnitudes more efficient

than existing FS signatures (e.g., [63], [64]) and an ideal choice

to be deployed on embedded IoTs. (ii) Tighter Reduction: Unlike

traditional Schnorr-based signatures (e.g., [31]), the proof of

our schemes avoids the forking lemma, thereby offering a

tighter reduction factor.

• Compact, Simple and Resilient Signing: Our signing only re-

lies on a few simple modular additions and multiplication, and

cryptographic hash calls. Hence, it does not require intricate

and side-channel-prone operations such as EC-scalar multipli-

cation, rejection sampling, and online randomness generation.

This simplicity also permits a small code base and memory

footprint. These properties increase the energy efficiency of our

schemes and make them more resilient against side-channel

attacks (e.g., [25], [65]) targeting complex operations, which are

shown to be problematic, especially on low-end IoT devices.

• Collusion-Resilient and Authenticated Distributed Verifi-
-cation with Offline-Online Capabilities: Our technique

avoids single-point failures and improves the collusion

and breach robustness of the verification servers by using

a distributed and hardware-assisted signature verification

strategy. Furthermore, prior to signature verification,

commitments can be generated and verified offline. In

contrast to certain counterpart schemes that depend on

servers providing assistance only in a semi-honest, non-

colluding, or merely central manner, our systems are able

to identify malicious injections of false commitments and

provide far quicker signature verification during the online

phase. All these characteristics allow our schemes to have

reduced end-to-end delays and more reliable authentication

than their counterparts with server-aided signatures.

• Full-Fledged Implementation, Comparison, and Validation:

We implemented our schemes, compared them with their

counterparts, and validated their efficiency on both commod-

ity hardware and resource-constrained embedded devices. We

open-sourced our full-fledged implementations for public test-

ing and future adaptations.

https://github.com/SaifNOUMA/LRSHA

2. Preliminaries

The acronyms and notations are described in Table 1.

Table 1: List of acronyms and notations

Notation/Acronym Description
MCU Micro-Controller Unit

TEE Trusted Execution Environment (also called Secure enclave)

FS Forward Security

(EC)DLP (Elliptic Curve) Discret Logarithm Problem

ROM Random Oracle Model

EUCMA Existential Unforgeability against Chosen Message Attack

(F)HDSGN FS Hardware-assisted Distributed Signature

(F)LRSHA FS Lightweight and Resilient Signature with Hardware Assistance

PRF Pseudo-Random Function

PPT Probabilistic Polynomial Time

sk/PK Private/Public key

𝑟/𝑅
Random nonce/Public commitment (Schnorr-like

schemes)

ComC / 𝐶 𝑗 Commitment Construct and signature 𝐶 𝑗 on a commitment

𝒮ℓ
/ 𝑎ℓ Identity of the ℓ th

ComC server and its private key set

sk′ℓ/PK′ℓ Private/public keys for certification for ℓ th
ComC server

𝒮ℓ

𝐿 Number of ComC servers in our system model

𝑗/𝐽 The algorithm state, and the maximum number of

forward-secure signatures to be generated

∥ / |𝑥 | String concatenation and bit length of a variable

𝑥
$←𝒳 / 𝜅 Random selection from a set 𝒳 and security parameter

𝑥ℓ
𝑗

Variable of server 𝒮ℓ
for state 𝑗

𝑥
ℓ1 ,ℓ2

𝑗
Aggregate variable of (𝑥ℓ1

𝑗
, 𝑥

ℓ1+1

𝑗
, . . . , 𝑥ℓ2

𝑗
), where ℓ2 ≥ ℓ1

®𝑥 Vector contains finite set of elements {𝑥𝑖}𝑛𝑖=1
where 𝑛 = | ®𝑥 |

represents of the number of elements in the vector

{0, 1}∗ Set of binary strings of any finite length

{𝑞𝑖}𝑛𝑖=0
Set of items 𝑞𝑖 for 𝑖 = 0, . . . , 𝑛

𝐻 : {0, 1}∗ → {0, 1}𝜅 Cryptographic hash function

𝐻(𝑘)(.) Return the output of 𝑘 hash evaluations on the same input

Definition 1 A digital signature scheme SGN is a tuple of three

algorithms (Kg, Sig, Ver) defined as follows:

- (sk, PK, 𝐼) ← SGN.Kg(1𝜅): Given the security parameter 𝜅,

it returns a private/public key pair (sk, PK) and system

parameters 𝐼 (implicit input to all other interfaces).

- 𝜎← SGN.Sig(sk, 𝑀): Given the private key sk and a

message 𝑀, the signing algorithm returns signature 𝜎.

- 𝑏 ← SGN.Ver(PK, 𝑀, 𝜎): Given the public key PK, mes-

sage 𝑀, and a signature 𝜎, it outputs a bit 𝑏 (if 𝑏 = 1, the

signature is valid, otherwise invalid).

Definition 2 A forward-secure signature FSGN has four algo-

rithms (Kg, Upd, Sig, Ver) defined as follows:

- (sk1 , PK, 𝐼) ← FSGN.Kg(1𝜅 , 𝐽): Given 𝜅 and the maximum

number of key updates 𝐽, it returns a private/public key

pair (sk1 , PK) and system parameters 𝐼 (including state

𝑆𝑡 ← (𝑗 = 1)).
- sk𝑗+1 ← FSGN.Upd(sk𝑗 , 𝐽): If 𝑗 ≥ 𝐽 then abort, else, given

sk𝑗 , it returns sk𝑗+1, delete sk𝑗 and 𝑗 ← 𝑗 + 1.

- 𝜎𝑗 ← FSGN.Sig(sk𝑗 , 𝑀𝑗): If 𝑗 > 𝐽 then abort, else it com-

putes 𝜎𝑗 with sk𝑗 on 𝑀 𝑗 , and sk𝑗+1 ← FSGN.Upd(𝑠𝑘 𝑗 , 𝐽).
- 𝑏 𝑗 ← FSGN.Ver(PK, 𝑀𝑗 , 𝜎𝑗): If 𝑗 > 𝐽 then abort, else given

PK, 𝑀 𝑗 , and 𝜎𝑗 , it outputs a validation bit 𝑏 𝑗 (if 𝑏 𝑗 = 1,

the signature is valid, otherwise invalid).

Definition 3 Let G be a cyclic group of order 𝑞, 𝛼 be a gener-

ator of G, and DLP attacker 𝒜 be an algorithm that returns an

integer in Z∗𝑞 . We consider the following experiment:

Experiment 𝐸𝑥𝑝𝑡𝐷𝐿
G,𝛼(𝒜):

𝑦
$← Z∗𝑞 , 𝑌 ← 𝛼𝑦

mod 𝑞, 𝑦′←𝒜(𝑌),
If 𝛼𝑦′

mod 𝑝 = 𝑌, then return 1, else return 0

The DL advantage of 𝒜 in this experiment is defined as:

AdvDL
G,𝛼(𝒜) = 𝑃𝑟[𝐸𝑥𝑝𝑡𝐷𝐿

G,𝛼(𝒜) = 1]
The DL advantage of (G, 𝛼) in this experiment is as follows:

AdvDL
G,𝛼(𝑡′) = max

𝒜
{AdvDL

G,𝛼(𝒜)}, where the maximum is

over all 𝒜 having time complexity 𝑡.

Remark 1 Although we give some definitions for DLP, our

implementation is based on Elliptic Curves (EC) for efficiency,

and the definitions hold under ECDLP [66].

3. System, threat, and security models

3.1. System Model

As shown in Figure 1, our system model has three entities:

PhysicianResearch
Center

Insurance
Company

Public
institution

Resourceful
Verifier

Potential Verifiers

Professionals

Resource-limited
Wearable IoT User

Costly Cryptographic Commitments

Signed Messages

Commitment Construct (ComC) Servers

𝑴𝟏, 𝝈𝟏 , … , ⟨𝑴𝑱, 𝝈𝑱⟩

False Input Detection
Collusion resiliency

Heterogeneous Wearable
IoT Application

Key
Compromise

4

21 3

3

2

Figure 1: Our System Model

1) Resource-limited Signer: We focus on low-end IoT devices

as signers. As depicted in Figure 1, we consider a secure

wearable medical IoT application, in which the patient is

equipped with sensors (e.g., a pacemaker) and wearable

devices (e.g., a smart watch) that generate digital signatures

on sensitive data to be authenticated by verifiers.

2) Verifiers: They can be any entity receiving the message-

signature pair from the signer. In our applications, veri-

fiers (e.g., doctors, researchers, insurance companies) are

equipped with commodity hardware (e.g., a laptop).

3) ComC Servers: ComC servers 𝒮 = (𝒮1 , . . . ,𝒮𝐿), where each

server is equipped with a TEE (i.e., secure enclave). We used

Intel SGX due to its wide availability (e.g., Microsoft Azure).

However, our model can be implemented with any TEE (e.g.,

ARM TrustZone, Sanctum).

3.2. Threat and Security Model

Our threat model is based on an adversary with the follow-

ing capabilities:

1) Passive attacks: Monitor and interpret the output of the cryp-

tographic interfaces sent from the IoT end devices and/or

the ComC servers.

https://github.com/SaifNOUMA/LRSHA

2) Active attacks: Attempt to intercept, forge, and modify mes-

sages, signatures and auxiliary values (e.g., commitments)

sent from IoT devices and ComC servers.

3) Key Compromise - resource-limited IoT side: Attempt breaching

device to extract the cryptographic secret [7].

4) Breach attempts on assisting clouds for verification services: At-

tempt to gain access to assisted cloud services to tamper

with the protocol such that: (i) Inject incorrect commitments.

(ii) Forge certificates of the commitments. (iii) Force the

cloud to collude (e.g., expose the secret keys).

Below, we first define the interfaces of our proposed schemes,

and then present their security model that captures the above

threat model as follows:

Definition 4 A hardware-assisted distributed digital signature

scheme HDSGN consists of four algorithms (Kg, ComC, SGN, Ver)

defined as follows:

- (sk, PK, ®𝑎, 𝐼) ← HDSGN.Kg(1𝜅 , 𝐿): Given 𝜅 and the number

of ComC servers 𝐿, it returns a private/public key pair

(sk, PK), system parameter (𝐼 , 𝑆𝑡 ← 𝑗 = 1), and private

key of each ComC server ®𝑎 = {𝑎ℓ }𝐿
ℓ=1

.

- (®𝑅 𝑗 , ®𝐶 𝑗) ← HDSGN.ComC({𝑎ℓ }𝐿
ℓ=1

, 𝑗): Given 𝑆𝑡 = 𝑗 and ®𝑎,

each server 𝒮ℓ
generates a commitment 𝑅ℓ

𝑗
and its sig-

nature 𝐶ℓ
𝑗
= SGN.Sig𝑎ℓ (𝑅ℓ

𝑗
). HDSGN.ComC returns (®𝑅 𝑗 =

{𝑅ℓ
𝑗
}𝐿
ℓ=1

, ®𝐶 𝑗 = {𝐶ℓ
𝑗
}𝐿
ℓ=1
) as output.

- 𝜎𝑗 ← HDSGN.Sig(sk, 𝑀𝑗): Given sk and a message 𝑀 𝑗 , it

returns a signature 𝜎𝑗 and 𝑗 ← 𝑗 + 1.

- 𝑏 𝑗 ← HDSGN.Ver(PK, 𝑀𝑗 , 𝜎𝑗): Given PK, 𝑀 𝑗 , and its sig-

nature 𝜎𝑗 , the verification algorithm calls (®𝑅 𝑗 , ®𝐶 𝑗) ←
HDSGN.ComC({𝑎ℓ }𝐿

ℓ=1
, 𝑗), and then it outputs a bit 𝑏 𝑗 (if

𝑏 𝑗 = 1, the signature is valid, otherwise invalid).

Definition 5 A forward-secure and hardware-assisted dis-

tributed digital signature scheme FHDSGN consists of five al-

gorithms (Kg, ComC, Upd, Sig, Ver) defined as follows:

- (sk1 , PK, ®𝑎, 𝐼) ← FHDSGN.Kg(1𝜅 , 𝐽 , 𝐿): Given 𝜅, 𝐿, and the

maximum number of signatures 𝐽 to be produced, it returns

(sk1 , PK), (𝐼 , 𝑆𝑡 ← 𝑗 = 1), and ®𝑎 = {𝑎ℓ }𝐿
ℓ=1

.

- (®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) ← FHDSGN.ComC(®𝑎, 𝑗): Given ®𝑎 and state 𝑗, it

returns a set of public key and commitment set (®𝑌𝑗 =

{𝑌ℓ
𝑗
}𝐿
ℓ=1

, ®𝑅 𝑗 = {𝑅ℓ
𝑗
}𝐿
ℓ=1
), a forward-secure signature on each

pair as
®𝐶 𝑗 = {FSGN.Sig𝑎ℓ (𝑌ℓ

𝑗
∥𝑅ℓ

𝑗
)}𝐿

𝑗=1
, and returns (®𝑅 𝑗 , ®𝐶 𝑗).

- sk𝑗+1 ← FHDSGN.Upd(sk𝑗 , 𝐽): As in Definition 2 update.

- 𝜎𝑗 ← FHDSGN.Sig(sk𝑗 , 𝑀𝑗): As in Definition 2 signing.

- 𝑏 𝑗 ← FHDSGN.Ver(PK, 𝑀𝑗 , 𝜎𝑗): If 𝑗 > 𝐽 then abort. Oth-

erwise, given the public key PK, a message 𝑀 𝑗 , and its

signature 𝜎𝑗 , the verification algorithm calls (®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) ←
FHDSGN.ComC(®𝑎, 𝑗), and then it outputs a bit 𝑏 𝑗 (if 𝑏 𝑗 = 1,

the signature is valid, otherwise invalid).

The standard security notion for a digital signature SGN is

the Existential Unforgeability against Chosen Message Attack

(EU-CMA) [19]. It captures a Probabilistic Polynomial Time

(PPT) adversary 𝒜 aiming at forging signed messages. It corre-

sponds to capabilities (1-2) stated in the threat model (passive

or active attacks on message-signature pairs).

Definition 6 EU-CMA experiment ExptEU-CMASGN for SGN is as fol-

lows (in random oracle model (ROM) [67]):

- (sk, PK, 𝐼) ← SGN.Kg(1𝜅)
- (𝑀∗ , 𝜎∗) ← 𝒜RO(.), SGN.Sigsk(.)(PK)
𝒜 wins the experiment if SGN.Ver(PK, 𝑀∗ , 𝜎∗) = 1 and 𝑀∗

was not queried to SGN.Sigsk(.) oracle. The EU-CMA advantage

of 𝒜 is defined as AdvEU-CMASGN (𝒜) = Pr[ExptEU-CMASGN = 1]. The

EU-CMA advantage of SGN is defined as AdvEU-CMASGN (𝑡 , 𝑞𝐻 , 𝑞𝑠) =
max𝒜 AdvEU-CMASGN (𝒜). Note that the maximum is evaluated

across all of the possible 𝒜 with time complexity 𝑡 and max-

imum number of running queries 𝑞𝐻 and 𝑞𝑠 to the RO(.) and

SGN.Sigsk(.) oracles, respectively.

1) Random Oracle RO(.): It handles 𝒜’s hash queries on any

message 𝑀 by returning a randomly uniformly distributed

output ℎ ← RO(𝑀). All cryptographic hashes used in our

schemes are modeled as RO(.) [67].

2) SGN.Sigsk(.) : It provides a signature 𝜎 on any queried

message 𝑀 computed as 𝜎← SGN.Sigsk(𝑀).

We follow the formal security model of a hardware-assisted

distributed digital signature scheme (HDSGN) as the Hardware-

assisted Distributed Existential Unforgeability against Chosen

Message Attack (HD-EU-CMA). It captures the capabilities (1-2,

4) in our threat model, including 𝒜’s potential attacks on the

ComC servers.

Definition 7 HD-EU-CMA experiment ExptHD-EU-CMAHDSGN for a

hardware-assisted distributed digital signature HDSGN =

(Kg, ComC, Sig, Ver) is defined as follows:

- (sk, PK, {𝑎ℓ }𝐿
ℓ=1

, 𝐼) ← HDSGN.Kg(1𝜅 , 𝐿)
- (𝑀∗ , 𝜎∗) ← 𝒜RO(.), HDSGN.Sigsk(.), HDSGN.ComC®𝑎 (.)(PK)

, where ®𝑎 = {𝑎ℓ }𝐿
ℓ=1

, denotes private key material of ComC

server {𝒮ℓ }𝐿
ℓ=1

, respectively.

𝒜 wins the experiment if HDSGN.Ver(PK, 𝑀∗ , 𝜎∗) =

1 and 𝑀∗ was not queried to HDSGN.Sigsk(.). The

HD-EU-CMA advantage of 𝒜 is defined as AdvHD-EU-CMAHDSGN (𝒜) =
Pr[ExptHD-EU-CMAHDSGN = 1]. The HD-EU-CMA advantage of HDSGN is

defined as AdvHD-EU-CMAHDSGN (𝑡 , 𝑞𝐻 , 𝑞𝑠) = max𝒜 AdvHD-EU-CMAHDSGN (𝒜)
with all possible adversary 𝒜 having time complexity 𝑡
and maximum queries 𝑞𝐻 to RO(.) and 𝑞𝑠 to both of

HDSGN.Sigsk(.) and HDSGN.ComC®𝑎(.).
1) Oracles RO(.) and HDSGN.Sigsk(.) works in as Def. 6.

2) ComC®𝑎(.): Given state 𝑗, it generates a public com-

mitment {𝑅ℓ
𝑗
}𝐿
ℓ=1

and corresponding signature {𝐶ℓ
𝑗
←

SGN.Sig𝑎ℓ (𝑅ℓ
𝑗
)}𝐿

ℓ=1
for each ComC server {𝒮ℓ }𝐿

ℓ=1
.

The standard security notion for a forward-secure

digital signature scheme FSGN is the Forward-secure

EU-CMA (F-EU-CMA) [49]. It captures the key compromise

capability 3) in our threat model.

Definition 8 F-EU-CMA experiment ExptF-EU-CMAFSGN for a

forward-secure signature scheme FSGN = (Kg, Upd, Sig, Ver)
is defined as follows:

- (sk1 , PK, 𝐼) ← FSGN.Kg(1𝜅 , 𝐽)
- (𝑀∗ , 𝜎∗) ← 𝒜RO(.), FSGN.Sigsk𝑗 (.), Break-In(.)(PK)
𝒜 wins the experiment if FSGN.Ver(PK, 𝑀∗ , 𝜎∗) = 1 and

𝑀∗ was not queried to FSGN.Sigsk𝑗 (.). The F-EU-CMA advan-

tage of 𝒜 is defined as AdvF-EU-CMAFSGN (𝒜) = Pr[ExptF-EU-CMAFSGN =

1]. The F-EU-CMA advantage of FSGN is defined as

AdvF-EU-CMAFSGN (𝑡 , 𝑞𝐻 , 𝑞𝑠 , 1) = max𝒜 AdvF-EU-CMAFSGN (𝒜), with all pos-

sible 𝒜 having time complexity 𝑡 and 𝑞𝐻 , 𝑞𝑠 , and one queries

to RO(.), FSGN.Sigsk𝑗 (.), and Break-In(.) oracles, respec-

tively. RO(.) and FSGN.Sigsk𝑗 (.) oracles are as in Definition 6.

Break-In(.) oracle returns the private key sk𝑗+1 if queried

on state 1 ≤ 𝑗 < 𝐽, else aborts.

We follow the formal security model of a forward-

secure hardware-assisted distributed digital signature scheme

(FHDSGN) as Forward-secure HD-EU-CMA (FHD-EU-CMA). It

combines both security definitions and captures all abilities

of the attacker (1-4) in our threat model. This offers improved
security over non-forward secure signature and/or cloud-assisted
signature schemes that only rely on a semi-honest model.

Definition 9 FHD-EU-CMA experiment ExptFHD-EU-CMAFHDSGN for a

forward-secure and hardware-assisted signature FHDSGN =

(Kg, ComC, Upd, Sig, Ver) is defined as follows:

- (sk1 , PK, 𝐼) ← FHDSGN.Kg(1𝜅 , 𝐽 , 𝐿)
- (𝑀∗ , 𝜎∗) ← 𝒜RO(.), FHDSGN.Sigsk𝑗 (.), FHDSGN.ComC®𝑎 (.), Break-In(.)(PK)

𝒜 wins the experiment if FHDSGN.Ver(PK, 𝑀∗ , 𝜎∗) =

1 and 𝑀∗ was not queried to FHDSGN.Sigsk𝑗 (.) ora-

cle. The FHD-EU-CMA advantage of 𝒜 is defined as

AdvFHD-EU-CMAFHDSGN = Pr[ExptFHD-EU-CMAFHDSGN = 1]. The FHD-EU-CMA ad-

vantage of FHDSGN is defined as AdvFHD-EU-CMAFHDSGN (𝑡 , 𝑞𝐻 , 𝑞𝑠 , 1) =
max𝒜 AdvFHD-EU-CMAFHDSGN (𝒜), with all possible 𝒜 having time com-

plexity 𝑡 and maximum queries equal to 𝑞𝐻 , 𝑞𝑠 , and one to

RO(.), both of FHDSGN.Sigsk𝑗 (.) and FHDSGN.ComC®𝑎(.), and

Break-In(.), respectively. All oracles behave as in Def. 7,

except FS signatures are used for signing in FHDSGN.Sigsk𝑗 (.),
FHDSGN.ComC®𝑎(.) and Break-In(.) (as in Definition 8).

Assumption 1 Each ComC server {𝒮ℓ }𝐿
ℓ=1

securely provisions

secret keys (before deployment) and runs their commitment

construction functions via a secure Trusted Execution Environ-

ment (TEE) as described in the system model to offer colluding

resistance and commitment authentication.

Discussion: The malicious security properties (i.e., capability

4 in our threat model) of our schemes at the assisting servers

rely on the security of the underlying TEE. This offers enhanced

mitigation to collusion and malicious tampering attacks on

the stored private keys on the ComC servers. This is realized

with a low cost and without having any impact on the signer

performance. Unlike some related works (e.g., [26]), we do

not require a TEE on the signer. We realized our TEE with

Intel SGX’s secure enclaves. However, our system could also

be instantiated using other isolated execution environments

(e.g., Sanctum [68]). It is crucial to recognize the limitations

of relying on trusted execution environments. For example,

Intel SGX encountered various side-channel attacks (e.g., [69]).

Generic techniques for protection against enclave side-channel

attacks are also under study in various works (e.g., [48]),

therefore they are complementary to ours. Finally, even if TEE

on some ComC servers is breached, the EU-CMA property of

our LRSHA scheme will remain as secure as our counterpart

cloud-assisted signatures (e.g., [19], [70]), which assume a

semi-honest server model with (𝐿−1, 𝐿)-privacy. However, our

forward-secure scheme in this case can only achieve EU-CMA

as LRSHA. We further note that 𝒜 successfully launching side-

channel attacks against multiple TEEs on distinct ComC servers

simultaneously assumes an extremely strong adversary.

4. Proposed Schemes

We first outline our design principles and how we address

some critical challenges of constructing a highly lightweight

signature with hardware-supported cloud assistance. We then

describe our proposed schemes in detail.

High-Level Idea and Design Principles: Fiat-Shamir type

EC-based signatures (e.g., Ed25519 [31], FourQ [66]) are among

the most efficient and compact digital signatures. Their main

overhead is the generation of a commitment 𝑅 ← 𝛼𝑟
mod 𝑝

(EC scalar multiplication) from one-time randomness 𝑟. In Sec-

tion 1.1, we captured the state-of-the-art lightweight signatures

that aim to mitigate this overhead via various commitment

management strategies.

In our design, we exploit the commitment separation

method (e.g., [16], [71]), but with various advancements to

address the challenges of previous approaches. In commitment

separation, the value 𝑅 𝑗 in 𝐻(𝑀 𝑗 ∥𝑅 𝑗) is replaced with one-time

randomness 𝑥 𝑗 per message as 𝐻(𝑀 𝑗 ∥𝑥 𝑗). This permits 𝑅 𝑗 to

be stored at the verifier before signature generation, provided

that 𝑥 𝑗 is disclosed only after signing. While this approach

eliminates ExpOps due to commitment generation, it has sig-

nificant limitations: (i) The verifier must store a commitment

per message to be signed that incurs linear public key storage

overhead [24], [46] (i.e., one-time commitments become a part

of the public key). (ii) This limits the total number of signatures

to be computed and puts a burden on signers to replenish

commitments when depleted.

Our strategy is to completely eliminate the burden of com-

mitments from the signer, but do so and by achieving advanced

security properties such as forward-security and malicious server
detection with collusion-resistance, which are not available in

previous counterparts simultaneously:

(i) Our design uses a distributed commitment strategy, in

which value 𝑟 is split into 𝐿 different shares {𝑟ℓ }𝐿
ℓ=1

each

provided to a TEE-supported ComC server {𝒮ℓ }𝐿
ℓ=1

along with

other keys to enable advanced features (to be detailed in al-

gorithmic descriptions). This approach mitigates single-point

failures and key compromise/escrow problems in centralized

cloud-assisted designs (e.g., [15], [46]). (ii) Our design does

not rely on BPV [43] (unlike [19]) or signature-tables (unlike

[45]), but only uses simple arithmetic and PRF operations.

This permits both computational and memory efficiency. If

we accept equal table storage as our counterparts, then this

further boosts our speed advantage. (iii) Some previous EC-

based server-assisted signatures rely on semi-honest servers,

which are prone to collusion and lack the ability to detect

servers supplying false commitments. Instead, we wrap our

ComC servers with a TEE that not only mitigates the collu-

sion risk, but also forces the attacker to breach multiple TEE

instances to extract keys or coerce an algorithmic deviation.

This substantially increases the practical feasibility of active

attacks targeting ComC servers. Moreover, our ComC servers

authenticate each commitment separately, permitting verifiers

to detect the server(s) injecting a false commitment. With TEE

support, after detection, we can also use attestation to fur-

ther mitigate post-compromise damages. (iv) We have a new

forward-secure variant with an efficient key evolution strategy

that avoids heavy nested certification trees (e.g., unlike [23],

[52]) and costly public key evolutions (e.g., [21]). Thanks to

this, our scheme offers more than 15 times faster signing with

24 times smaller signatures compared to the most efficient

(generic) forward-secure EC-based counterpart (see Section 6).

We now present our schemes LRSHA and FLRSHA.

4.1. Lightweight and Resilient Signature with Hard-
ware Assistance (LRSHA)

We created Lightweight and Resilient Signature with Hard-

ware Assistance (LRSHA), which is outlined in Fig. 2 and de-

tailed in Alg. 1. We further elaborate steps in Alg. 1 as follows.

Signer 𝑰𝑫 ∈ 𝑰𝑫
(e.g., Low-end IoT device)

𝝈𝒋 ← 𝐋𝐑𝐒𝐇𝐀. 𝐒𝐢𝐠(𝒔𝒌,𝑴𝒋)

𝒔𝒌
(𝑴𝒋, 𝝈𝒋) Verifier

𝒃𝒋 ← 𝐋𝐑𝐒𝐇𝐀. 𝐕𝐞𝐫(𝑷𝑲,𝑴𝒋, 𝝈𝒋)	

Commitment Construct (ComC) Servers

(𝑹𝒋, 𝑪𝒋) ← 𝐋𝐑𝐒𝐇𝐀. 𝐂𝐨𝐦𝐂(𝒂, 𝒋)	

𝒋 1 (𝑹𝒋, 𝑪𝒋) 2

𝒂ℓ𝒂𝟏 𝒂𝑳… …

3

4

Figure 2: High-Level Overview of LRSHA.

Algorithm 1 Lightweight and Resilient Signature with Hard-

ware Assistance (LRSHA)

(sk, PK, ®𝑎, 𝐼) ← LRSHA.Kg(1𝜅 , 𝐿):
1: Generate large primes 𝑞 and 𝑝 such that 𝑞 |(𝑝 − 1). Select a generator 𝛼 of the

subgroup G of order 𝑞 in Z∗𝑞 . Set 𝐼 ← (𝑝, 𝑞, 𝛼, 𝑆𝑡 ← 𝑗 = 1)
2: 𝑦

$← Z∗𝑞 and 𝑌 ← 𝛼𝑦
mod 𝑝

3: for ℓ = 1, . . . , 𝐿 do
4: (sk′ℓ , PK′ℓ) ← SGN.Kg(1𝜅)
5: 𝑟ℓ

$← Z∗𝑞
6: 𝑎ℓ ← ⟨sk′ℓ , 𝑟ℓ ⟩ is securely provisioned to the enclave of server 𝒮ℓ

7: sk = ⟨𝑦, ®𝑟 = {𝑟ℓ }𝐿
ℓ=1
⟩

8: return (sk, PK = (𝑌, ®PK′ = {PK′ℓ }𝐿
ℓ=1
), ®𝑎 = {𝑎ℓ }𝐿

ℓ=1
, 𝐼)

(®𝑅 𝑗 , ®𝐶 𝑗) ← LRSHA.ComC(®𝑎, 𝑗):
1: for ℓ = 1, . . . , 𝐿 do
2: 𝑅ℓ

𝑗
← 𝛼

𝑟ℓ
𝑗

mod 𝑝 , where 𝑟ℓ
𝑗
← PRF𝑟ℓ (𝑗) mod 𝑞

3: 𝐶ℓ
𝑗
← SGN.Sig(sk′ℓ , 𝑅ℓ

𝑗
)

4: return (®𝑅 = {𝑅ℓ
𝑗
}𝐿
ℓ=1

, ®𝐶 = {𝐶ℓ
𝑗
}𝐿
ℓ=1
)

𝜎𝑗 ← LRSHA.Sig(sk, 𝑀𝑗):
1: 𝑟1,𝐿

𝑗
← ∑𝐿

ℓ=1
𝑟ℓ
𝑗

mod 𝑞 , where 𝑟ℓ
𝑗
← PRF𝑟ℓ (𝑗) mod 𝑞

2: 𝑒 𝑗 ← 𝐻(𝑀 𝑗 ∥𝑥 𝑗) mod 𝑞 , where 𝑥 𝑗 ← PRF𝑦 (𝑗) mod 𝑞

3: 𝑠 𝑗 ← 𝑟1,𝐿
𝑗
− 𝑒 𝑗 · 𝑦 mod 𝑞

4: Update 𝑆𝑡 ← 𝑗 + 1

5: return 𝜎𝑗 ← ⟨𝑠 𝑗 , 𝑥 𝑗 , 𝑗⟩

𝑏 𝑗 ← LRSHA.Ver(PK, 𝑀𝑗 , 𝜎𝑗): Step 1-4 can be run offline.

1: (®𝑅 𝑗 , ®𝐶 𝑗) ← LRSHA.ComC(®𝑎, 𝑗) ⊲ Offline

2: for ℓ = 1, . . . , 𝐿 do ⊲ Offline

3: if SGN.Ver(PK′ℓ , 𝑅ℓ
𝑗
, 𝐶ℓ

𝑗
) = 1 then continue else return 𝑏 𝑗 = 0

4: 𝑅1,𝐿
𝑗
← ∏𝐿

ℓ=1
𝑅ℓ

𝑗
mod 𝑝 ⊲ Offline

5: 𝑒 𝑗 ← 𝐻(𝑀 𝑗 ∥𝑥 𝑗) mod 𝑞

6: if 𝑅1,𝐿
𝑗

= 𝛼𝑠 𝑗 · 𝑌𝑒 𝑗
mod 𝑝, return 𝑏 𝑗 = 1, else return 𝑏 𝑗 = 0

The key generation algorithm LRSHA.Kg accepts the secu-

rity parameter 𝜅 and the number of ComC servers 𝐿. It first

generates EC-related parameters 𝐼 and the main private/public

key pair (Step 1-2), and then a commitment certification pri-

vate/public key pair (sk′ℓ , PK′ℓ) for each server 𝒮ℓ
(Step 4). Sub-

sequently, it generates private key components 𝑎ℓ = ⟨sk′ℓ , 𝑟ℓ ⟩ to

be provisioned to each secure enclave of the server 𝒮ℓ
(step 5-

6). Finally, sk and the internal state 𝑆𝑡 = (𝑗 ← 1) are provided

to the signer (Step 7-8).

In the signature generation algorithm LRSHA.Sig, given

the state 𝑗, the signer first computes 𝑟1,𝐿
𝑗

by aggregating values

{𝑟ℓ
𝑗
}𝐿
ℓ=1

via PRF calls (Step 1). The one-time randomness 𝑥 𝑗
is used as the commitment (Step 2) instead of the public

commitment 𝑅. Step 3 is as in Schnorr’s signature, followed by

a state update. Overall, our signing avoids any ExpOp, costly

pre-computed tables (e.g., BPV or signature tables), or secure

hardware requirements.

LRSHA.Ver is a cloud-assisted verification algorithm, and

therefore calls LRSHA.ComC to retrieve 𝐿 partial commitment

values {𝑅ℓ
𝑗
}𝐿
ℓ=1

and their certificates from ComC servers (Step

1). In LRSHA.ComC, each server 𝒮ℓ
first derives {𝑅ℓ

𝑗
}𝐿
ℓ=1

from

their private keys ®𝑎 = {𝑎ℓ }𝐿
ℓ=1

(step 2), puts a signature to

certify them as {𝐶ℓ
𝑗
}𝐿
ℓ=1

(step 3) and returns these values to the

verifier. The rest of LRSHA.Ver is similar to EC-Schnorr but

with randomness 𝑥 𝑗 instead of commitment 𝑅 𝑗 in hash (steps 5-

6). Note that the verifier can retrieve commitments and verify

certificates offline (and even in batch) before message verifi-

cation occurs. Hence, the overall online message verification

overhead is identical to the EC-Schnorr signature. Moreover,

LRSHA.Ver does not require any pre-computed table, lets

the verifier detect false commitments, and offers distributed

security for assisting servers with enhanced collusion resiliency

via TEE support in LRSHA.ComC.

4.2. Forward-secure Lightweight and Resilient Signa-
ture with Hardware Assistance (FLRSHA)

We now present our Forward-secure LRSHA (FLRSHA)

as detailed in Algorithm 2 with an overview in Figure 3.

We developed a key evolution mechanism for the signer

and ComC servers that enables a highly lightweight yet

compromise-resilient digital signature. Our introduction of dis-

tributed TEEs provided significant performance and security

benefits, making FLRSHA the most efficient forward-secure

alternative for low-end embedded devices (see in Section 6).

Below, we outline FLRSHA algorithms by focusing on their

differences with LRSHA.

Signer 𝑰𝑫 ∈ 𝑰𝑫
(e.g., Low-end IoT device)

(𝑴𝒋, 𝝈𝒋) Verifier
𝒃𝒋 ← 𝐅𝐋𝐑𝐒𝐇𝐀. 𝐕𝐞𝐫(𝑷𝑲,𝑴𝒋, 𝝈𝒋)	

Commitment Construct (ComC) Servers

(𝒀𝒋, 𝑹𝒋, 𝑪𝒋) ← 𝐅𝐋𝐑𝐒𝐇𝐀. 𝐂𝐨𝐦𝐂(𝒂, 𝒋)	

𝒋 1 (𝒀𝒋, 𝑹𝒋, 𝑪𝒋) 2

𝒂ℓ𝒂𝟏 𝒂𝑳… …

3

4𝒔𝒌𝒋

𝝈𝒋 	 ← 𝐅𝐋𝐑𝐒𝐇𝐀. 𝐒𝐢𝐠(𝒔𝒌𝒋, 𝑴𝒋)
𝒔𝒌𝒋%𝟏 ← 𝐅𝐋𝐑𝐒𝐇𝐀. 𝐔𝐩𝐝(𝒔𝒌𝒋, 𝑱)

Figure 3: The high-level overview of FLRSHA.

The key generation FLRSHA.Kg works as in LRSHA.Kg but

with the following differences: (i) It takes the maximum num-

ber of signatures 𝐽 as an additional parameter, (ii) It generates a

distinct forward-secure signature private/public key pair (step

3), (iii) It generates a private key tuple (𝑦ℓ
1
, 𝑟ℓ

1
) (Step 4), for each

Algorithm 2 Forward-secure Lightweight and Resilient Signa-

ture with Hardware Assistance (FLRSHA)

(sk1 , PK, ®𝑎, 𝐼) ← FLRSHA.Kg(1𝜅 , 𝐽 , 𝐿):
1: Generate primes 𝑞 and 𝑝 > 𝑞 such that 𝑞 |(𝑝 − 1). Select a generator 𝛼 of the

subgroup G of order 𝑞 in Z∗𝑝 . Set 𝐼 ← ⟨𝑝, 𝑞, 𝛼⟩ as system parameter.

2: for ℓ = 1, . . . , 𝐿 do
3: (sk′ℓ , PK′ℓ) ← FSGN.Kg(1𝜅)
4: 𝑦ℓ

1

$← Z∗𝑞 , and 𝑟ℓ
1

$← Z∗𝑞
5: 𝑎ℓ ← ⟨𝑦ℓ

1
, 𝑟ℓ

1
, sk′ℓ ⟩ is securely provisioned to the TEE of server 𝒮ℓ

6: sk1 ← ⟨ ®𝑦1 = {𝑦ℓ
1
}𝐿
ℓ=1

, ®𝑟1 = {𝑟ℓ
1
}𝐿
ℓ=1
⟩. The signer’s initial state is 𝑆𝑡 ← 𝑗 = 1

7: return (sk1 , PK = {PK′ℓ }𝐿
ℓ=1

, ®𝑎 = {𝑎ℓ }𝐿
ℓ=1

, 𝐼)

(®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) ← FLRSHA.ComC(®𝑎, 𝑗): Each 𝑆1 , . . . , 𝑆𝐿
executes in their indepen-

dent TEE in isolation. It can be done in batch offline, or on demand online.

1: for ℓ = 1, . . . , 𝐿 do
2: 𝑌ℓ

𝑗
← 𝛼

𝑦ℓ
𝑗

mod 𝑝 , where 𝑦ℓ
𝑗
← 𝐻(𝑗−1)(𝑦ℓ

1
) mod 𝑞

3: 𝑅ℓ
𝑗
← 𝛼

𝑟ℓ
𝑗

mod 𝑝 , where 𝑟ℓ
𝑗
← 𝐻(𝑗−1)(𝑟ℓ

1
) mod 𝑞

4: 𝐶ℓ
𝑗
← FSGN.Sig(sk′ℓ , 𝑌ℓ

𝑗
∥𝑅ℓ

𝑗
)

5: return (®𝑌𝑗 = {𝑌ℓ
𝑗
}𝐿
ℓ=1

, ®𝑅 𝑗 = {𝑅ℓ
𝑗
}𝐿
ℓ=1

, ®𝐶 𝑗 = {𝐶ℓ
𝑗
}𝐿
ℓ=1
)

sk𝑗+1 ← FLRSHA.Upd(sk𝑗 , 𝐽): If 𝑗 ≥ 𝐽 then abort else continue:

1: for ℓ = 1, . . . , 𝐿 do
2: 𝑦ℓ

𝑗+1
← 𝐻(𝑦ℓ

𝑗
) mod 𝑞

3: 𝑟ℓ
𝑗+1
← 𝐻(𝑟ℓ

𝑗
) mod 𝑞

4: Set ®𝑦 𝑗+1 = {𝑦ℓ
𝑗+1
}𝐿
ℓ=1

, ®𝑟 𝑗+1 = {𝑟ℓ
𝑗+1
}𝐿
ℓ=1

, and 𝑆𝑡 ← 𝑗 + 1

5: return sk𝑗+1 ← ⟨®𝑦 𝑗+1 , ®𝑟 𝑗+1⟩

𝜎𝑗 ← FLRSHA.Sig(sk𝑗 , 𝑀𝑗): If 𝑗 > 𝐽 then abort, else continue:

1: 𝑦1,𝐿
𝑗
← ∑𝐿

ℓ=1
𝑦ℓ
𝑗

mod 𝑞 , and 𝑟1,𝐿
𝑗
← ∑𝐿

ℓ=1
𝑟ℓ
𝑗

mod 𝑞

2: 𝑒 𝑗 ← 𝐻(𝑀 𝑗 ∥𝑥 𝑗) mod 𝑞 , where 𝑥 𝑗 ← PRF
𝑦

1,𝐿
𝑗
(𝑗)

3: 𝑠 𝑗 ← 𝑟1,𝐿
𝑗
− 𝑒 𝑗 · 𝑦1,𝐿

𝑗
mod 𝑞

4: sk𝑗+1 ← FLRSHA.Upd(sk𝑗 , 𝐽)
5: return 𝜎𝑗 ← ⟨𝑠 𝑗 , 𝑥 𝑗 , 𝑗⟩

𝑏 𝑗 ← FLRSHA.Ver(PK, 𝑀𝑗 , 𝜎𝑗): If 𝑗 > 𝐽 then abort, else continue: Note that

steps 1-4 can be run offline.

1: (®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) ← FLRSHA.ComC(®𝑎, 𝑗) ⊲ Offline

2: for 𝑗 = 1, . . . , 𝐿 do ⊲ Offline

3: if FSGN.Ver(PK′ℓ , 𝑌ℓ
𝑗
∥𝑅ℓ

𝑗
, 𝐶ℓ

𝑗
) = 1 then continue else return 𝑏 𝑗 = 0

4: 𝑌1,𝐿
𝑗
← ∏𝐿

ℓ=1
𝑌ℓ
𝑗

mod 𝑝 , and 𝑅1,𝐿
𝑗
← ∏𝐿

ℓ=1
𝑅ℓ

𝑗
mod 𝑝 ⊲ Offline

5: 𝑒 𝑗 ← 𝐻(𝑀 𝑗 ∥𝑥 𝑗) mod 𝑞

6: if 𝑅1,𝐿
𝑗

= 𝛼𝑠 𝑗 · (𝑌1,𝐿
𝑗
)𝑒 𝑗 mod 𝑝 then return 𝑏 𝑗 = 1 else return 𝑏 𝑗 = 0

{𝒮ℓ }𝐿
ℓ=1

. Unlike LRSHA, ComC will produce one-time public

key pairs from those and certify them with a forward-secure

signature.

In FLRSHA.Sig, unlike LRSHA, the signer calls a key up-

date function FLRSHA.Upd (step 4), which evolves private key

pairs {(𝑦ℓ
𝑗
, 𝑟ℓ

𝑗
)}𝐿

ℓ=1
by hashing and then deleting the previous

key given 1 ≤ 𝑗 < 𝐽 (steps 2-3). FLRSHA.Upd ensures a forward-

secure private key pair is maintained per ComC server up to

state 𝐽. FLRSHA.Sig then computes two aggregate private key

components (step 1) instead of one, but uses this key pair as in

LRSHA.Sig to compute the signature (steps 2-3). The cost of

FLRSHA.Sig is mainly a few PRF calls and modular additions

and therefore is highly efficient, as shown in Section 6.

FLRSHA.Ver works like LRSHA.Ver but with differences

in aggregate keys and ComC: (i) FLRSHA.ComC provides a

pair of one-time public key set and forward-secure signatures

(®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) for each {𝒮ℓ }𝐿
ℓ=1

, which can be retrieved and au-

thenticated offline (before actual signature verification, only

up to 𝐽) (steps 1-3). (ii) The verifier computes the aggregate

pair (𝑌1,𝐿
𝑗

, 𝑅1,𝐿
𝑗
) (as opposed to only aggregate commitment

in LRSHA.Ver), and the rest is as in LRSHA.Ver. Hence, the

online overhead of FLRSHA.Ver is almost as efficient as that of

LRSHA.Ver with only a small-constant number of (negligible)

scalar addition cost differences.

• Enhancing computational efficiency on ComC servers: In Al-

gorithm 2, ComC servers run a hash chain on their private

key components to generate public keys and commitments. To

avoid the cost of hash recursion for long chains (e.g., ≈ 2
20

), one

can use a pre-computed table of the private key components

with interleaved indices. This offers a computation-storage

trade-off that ComC servers can decide. Note that the private

keys are stored in a secure enclave. Given that modern enclaves

offer large protected memory of up to 512 GB, the overhead of

pre-computed tables is likely negligible. For instance, the total

memory overhead of (𝐽 = 2
20) public commitments is equal to

only 32 MB.

5. Security Analysis

We prove that LRSHA and FLRSHA are HD-EU-CMA and

FHD-EU-CMA secure, respectively (in random oracle model).

We omit terms negligible to 𝜅 (unless expressed for clarity).

Theorem 1 If a PPT adversary 𝒜 can break the HD-EU-CMA-
secure LRSHA in time 𝑡 and after 𝑞𝑠 signature and commitment
queries to LRSHA.Sigsk(.) and LRSHA.ComC®𝑎(.) oracles, and 𝑞𝐻
queries to RO(.), then one can build a polynomial-time algorithm
ℱ that breaks the DLP in time 𝑡′ (by Definition 7). The probability
that any {𝑆𝑙}𝐿

𝑙=1
injects a false commitment without being detected

is AdvEU-CMASGN (𝑡′′, 𝑞𝐻 , 𝐿 · 𝑞𝑠), under the Assumption 1, in time 𝑡′′.

AdvHD-EU-CMALRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠) ≤ AdvDL
G,𝛼(𝑡′), 𝑡′ = 𝒪(𝑡) + 𝐿 · 𝒪(𝑞𝑠 · 𝜅3)

Proof: Let 𝒜 be a LRSHA attacker. We construct a DL-attacker

that uses 𝒜 as a subroutine. We set (𝑦 $← Z∗𝑞 , 𝑌 ← 𝛼𝑦
mod 𝑝)

as in Definition 3 and
®PK′ = {(sk′ℓ , PK′ℓ) ← SGN.Kg(1𝜅)}𝐿

ℓ=1

(as in LRSHA.Kg), where the rest of the key generation will

be simulated in the Setup phase . ℱ is run by Definition 7 (i.e.,

HD-EU-CMA) as follows:

Algorithm ℱ (PK):
Setup: ℱ maintains ℒℋ ,ℒℳ, and ℒℛ to keep track of

the query results in during the experiments. ℒℋ is a public

hash list in form of pairs {𝑀𝑖 : ℎ𝑖}, where (𝑀𝑖 , ℎ𝑖) represents

𝑖th data item queried to RO(.) and its corresponding answer,

respectively. ℒℳ is a public message list that represents the

messages queried by 𝒜 to LRSHA.Sigsk(.) oracle. ℒℛ is a

private list containing the randomly generated variables.

ℱ initializes simulated public keys and RO(.) as follows:

- Key Setup: ℱ injects challenge public key as PK = (𝑌, ®PK′),
and sets the parameters 𝐼 ← (𝑝, 𝑞, 𝛼, 𝐿). ℱ generates 𝑥0

$←
Z∗𝑞 , adds it to ℒℛ, and sets the state as 𝑆𝑡 ← 𝑗 = 1.

- RO(.) Setup: ℱ uses a function H-Sim that acts as a random

oracle RO(.). If ∃𝑀 : ℒℋ[𝑀] = ℎ, then H-Sim returns ℎ.

Otherwise, it returns ℎ
$← Z∗𝑞 and save it as ℒℋ[𝑀] ← ℎ.

• Execute (𝑀∗ , 𝜎∗) ← 𝒜RO(.), LRSHA.Sigsk(.), LRSHA.ComC®𝑎 (.)(PK) :

ℱ handles the queries of 𝒜 as follows:

- Queries of 𝒜:𝒜 can query RO(.) and LRSHA.Sigsk(.) on any

message 𝑀 of its choice up to 𝑞𝐻 and 𝑞𝑠 times, respectively.

𝒜 can query LRSHA.ComC®𝑎(.) oracle on the state 𝑗 as input,

and it returns the corresponding commitments (®𝑅 𝑗 , ®𝐶 𝑗) as the

output. ℱ handles 𝒜’s queries as follows:

1) RO(.) queries: 𝒜 queries RO(.) on a message 𝑀. ℱ calls

ℎ ← H-Sim(𝑀,ℒℋ) and returns ℎ to 𝒜.

2) LRSHA.Sigsk(.) queries: Insert 𝑀 into ℒℳ, and execute:

i) 𝑥 𝑗 ← H-Sim(𝑥0∥ 𝑗 ,ℒℋ), where (𝑥0 ← ℒℛ). If

𝑀 𝑗 ∥𝑥 𝑗 ∉ ℒℋ , then ℱ calls H-Sim(𝑀 𝑗 ∥𝑥 𝑗 ,ℒℋ), other-

wise ℱ aborts.
ii) Retrieve 𝑠 𝑗 from ℒℛ if 𝑠 𝑗 ∈ ℒℛ. Otherwise, ℱ sets

𝑠 𝑗
$← Z∗𝑞 , 𝑒 𝑗

$← Z∗𝑞 , and 𝑅1,𝐿
𝑗
← 𝛼𝑠 𝑗 · 𝑌𝑒 𝑗

mod 𝑝 and

adds each of 𝑠 𝑗 , 𝑒 𝑗 , and 𝑅1,𝐿
𝑗

to ℒℛ.

iii) 𝑆𝑡 = (𝑗 ← 𝑗 + 1) and return 𝜎𝑗 ← (𝑠 𝑗 , 𝑥 𝑗 , 𝑗).
3) Handle LRSHA.ComC®𝑎(.):𝒜 can query LRSHA.ComC®𝑎(.) on

any index 1 ≤ 𝑗 ≤ 𝑞𝑠 of her choice. ℱ handles these

queries as follows: If 𝑅ℓ
𝑗
∉ ℒℛ, then ℱ generates 𝑅ℓ

𝑗

$← Z∗𝑝
and adds it to ℒℛ, else fetch it from ℒℛ for ℓ = 1, . . . , 𝐿−1.

ℱ also checks if 𝑅1,𝐿
𝑗
∈ ℒℛ, then it retrieves. Other-

wise, it generates 𝑒 𝑗
$← Z∗𝑞 and 𝑠 𝑗

$← Z∗𝑞 , and sets

𝑅1,𝐿
𝑗
← 𝛼𝑠 𝑗 ·𝑌𝑒 𝑗

mod 𝑝, 𝑅𝐿
𝑗
← ∏𝐿−1

ℓ1=1
(𝑅ℓ1

𝑗
)−1 · 𝑅1,𝐿

𝑗
mod 𝑝,

and add these values to ℒℛ. Finally, ℱ computes {𝐶ℓ
𝑗
←

SGN.Sig ®sk′(𝑅
ℓ
𝑗
)}𝐿

ℓ=1
and returns (®𝑅 𝑗 ← {𝑅ℓ

𝑗
}𝐿
ℓ=1

, ®𝐶 𝑗 =

{𝐶ℓ
𝑗
}𝐿
ℓ=1
) to 𝒜.

- Forgery of 𝒜: Finally, 𝒜 outputs a forgery for PK as

(𝑀∗ , 𝜎∗), where 𝜎∗ = (𝑠∗ , 𝑥∗ , 𝑗). By Definition 7,

𝒜 wins the HD-EU-CMA-experiment for LRSHA if

LRSHA.Ver(PK, 𝑀∗ , 𝜎∗) = 1 and 𝑀∗ ∉ ℒℳ.

- Forgery of ℱ : If 𝒜 fails, ℱ also fails and aborts. Otherwise,

given an LRSHA forgery (𝑀∗ , 𝜎∗ ← (𝑠∗ , 𝑥∗ , 𝑗)) on PK: (i)
ℱ checks if 𝑀∗∥𝑥∗ ∉ ℒℋ (i.e., 𝒜 does not query RO(.)),
then ℱ aborts. (ii) ℱ checks if 𝑅1,𝐿

𝑗
∉ ℒℛ (i.e., ℱ did not

query LRSHA.ComC®𝑎(.)), then ℱ aborts. Otherwise, ℱ con-

tinues as follows: Given 𝑅1,𝐿
𝑗

computed by 𝒜, the equation

𝑅1,𝐿
𝑗

= 𝑌𝑒 𝑗 · 𝛼𝑠 𝑗
mod 𝑝 holds, where 𝑒 𝑗 and 𝑠 𝑗 are derived

from ℒℛ. LRSHA.Ver(PK, 𝑀∗
𝑗
, 𝜎∗

𝑗
) = 1 also holds, and so

𝑅1,𝐿
𝑗
≡ 𝑌

𝑒∗
𝑗 ·𝛼𝑠∗

𝑗
mod 𝑝 holds and 𝑒∗

𝑗
← H-Sim(𝑀∗

𝑗
∥𝑥∗

𝑗
) mod 𝑝.

Therefore, ℱ can extract 𝑦′ = 𝑦 by solving the below modular

linear equations, where 𝑌 = 𝛼𝑦′
mod 𝑝.

𝑅1,𝐿
𝑗
≡ 𝑌

𝑒∗
𝑗 · 𝛼𝑠∗

𝑗
mod 𝑝, 𝑅1,𝐿

𝑗
≡ 𝑌𝑒 𝑗 · 𝛼𝑠 𝑗

mod 𝑝,

𝑟1,𝐿
𝑗
≡ 𝑦′ · 𝑒∗𝑗 + 𝑠∗𝑗 mod 𝑞, 𝑟1,𝐿

𝑗
≡ 𝑦′ · 𝑒 𝑗 + 𝑠 𝑗 mod 𝑞,

𝑌 = 𝛼𝑦′
mod 𝑝 holds as 𝒜’s forgery is valid and non-trivial

on PK. By Definition 3, ℱ wins the DL experiment.

Execution Time Analysis: The runtime of ℱ is that of 𝒜 plus

the time to respond to the queries of RO(.), LRSHA.Sigsk(.),
and LRSHA.ComC®𝑎(.). The dominating overhead of the sim-

ulations is modular exponentiation, whose cost is denoted

as 𝒪(𝜅3). Each LRSHA.Sigsk(.) and LRSHA.ComC®𝑎(.) query

invokes approximately 𝐿 modular exponentiation operations,

making asymptotically dominant cost 𝐿 · 𝒪(𝑞𝑠 · 𝜅3). Therefore,

the approximate running time of ℱ is 𝑡′ = 𝒪(𝑡) + 𝐿 · 𝒪(𝑞𝑠 · 𝜅3).
Success Probability Analysis: ℱ succeeds if below events occur.

- E1: ℱ does not abort during the query phase.

- E2: 𝒜 wins the HD-EU-CMA experiment for LRSHA.

- E3: ℱ does not abort after 𝒜’s forgery.

- Win: ℱwins the DL-experiment.
- 𝑃𝑟[Win] = 𝑃𝑟[E1] · 𝑃𝑟[E2|E1] · 𝑃𝑟[E3|E1 ∧ E2]
• The probability that event E1 occurs: During the query phase,

ℱ aborts if 𝑀 𝑗 ∥𝑥 𝑗 ∈ ℒℋ holds, before ℱ inserts 𝑀 𝑗 ∥𝑥 𝑗 into

ℒℋ . This occurs if 𝒜 guesses 𝑥 𝑗 (before it is released) and

then queries 𝑀 𝑗 ∥𝑥 𝑗 to RO(.) before it queries HDSGN.Sigsk(.).
The probability that this occurs is

1

2
𝜅 , which is negligible in

terms of 𝜅. Hence, 𝑃𝑟[E1] = (1 − 1

2
𝜅) ≈ 1.

• The probability that event E2 occurs: If ℱ does not abort,

𝒜 also does not abort since 𝒜’s simulated view is in-
distinguishable from 𝒜’s real view. Therefore, 𝑃𝑟[E2|E1] ≈
AdvHD-EU-CMALRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠).
• The probability that event E3 occurs: ℱ does not abort

if the following conditions are satisfied: (i) 𝒜 wins the

HD-EU-CMA experiment for LRSHA on a message 𝑀∗ by query-

ing it to RO(.). The probability that 𝒜 wins without querying

𝑀∗ to RO(.) is as difficult as a random guess (see event E1).

(ii) 𝒜 wins the HD-EU-CMA experiment for LRSHA by querying

LRSHA.ComC®𝑎(.). The probability that 𝒜 wins without query-

ing LRSHA.ComC®𝑎(.) is equivalent to forging SGN, which is

equal to AdvEU-CMASGN (𝑡′′, 𝑞𝐻 , 𝑞𝑠). (iii) After ℱ extracts 𝑦′ = 𝑦
by solving modular linear equations, the probability that 𝑌 .
𝛼𝑦′

mod 𝑝 is negligible in terms 𝜅, since PK = (𝑌, {PK′ℓ }𝐿
ℓ=1
)

and LRSHA.Ver(PK, 𝑀∗ , 𝜎∗) = 1. Hence, 𝑃𝑟[E3|E1 ∧ E2] ≈
AdvHD-EU-CMALRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠).

Indistinguishability Argument: The real-view of

−→
𝐴 real is com-

prised of (PK, 𝐼), the answers of LRSHA.Sigsk(.) and

LRSHA.ComC®𝑎(.) (recorded in ℒℳ and ℒℛ by ℱ), and the

answer of RO(.) (recorded in ℒℋ by ℱ). All these values are

generated by LRSHA algorithms, where sk = (𝑦, ®𝑟) serves as

initial randomness. The joint probability distribution of

−→
𝐴 real is

random uniform as that of sk.

The simulated view of 𝒜 is as

−→
𝐴 sim, and it is equivalent to

−→
𝐴 real except that in the simulation, (𝑠 𝑗 , 𝑒 𝑗 , 𝑥0) (and so as 𝑥 𝑗) are

randomly drawn from Z∗𝑞 . This dictates the selection {𝑅1,𝐿
𝑗
} as

random via the LRSHA.Sigsk(.) and LRSHA.ComC®𝑎(.) oracles,

respectively. That is, for each state 𝑆𝑡 = 𝑗, the partial public

commitments {𝑅ℓ
𝑗
}𝐿−1

ℓ=1
are randomly selected from Z∗𝑞 while the

last partial public commitment is equal to 𝑅𝐿
𝑗
← ∏𝐿−1

ℓ=1
(𝑅ℓ

𝑗
)−1 ·

𝛼𝑠 𝑗 · 𝑌𝑒 𝑗
mod 𝑝. The aggregate commitment 𝑅1,𝐿

𝑗
← ∏𝐿

ℓ=1
𝑅ℓ

𝑗

mod 𝑝 = (∏𝐿−1

ℓ=1
𝑅ℓ

𝑗
) · (∏𝐿−1

ℓ=1
(𝑅ℓ

𝑗
)−1) · 𝛼𝑠 𝑗 · 𝑌𝑒 𝑗 = 𝛼𝑠 𝑗 · 𝑌𝑒 𝑗

mod 𝑝.

Thus, the correctness of aggregate commitments holds as in the

real view. The joint probability distribution of these values is

randomly and uniformly distributed and is identical to original

signatures and hash outputs in

−→
𝐴 real, since the cryptographic

hash function 𝐻 is modeled as RO(.) via H-Sim. ■

Theorem 2 If a PPT adversary 𝒜 can break the FHD-EU-CMA-
secure FLRSHA in time 𝑡 and after 𝑞𝑠 signature and commitment
queries to both FLRSHA.Sigsk𝑗 (.) and FLRSHA.ComC®𝑎(.) oracles,
𝑞𝐻 queries to RO(.) and one query to Break-In(.) oracle, then
one can build a polynomial-time algorithm ℱ that breaks DLP in
time 𝑡′ (by Definition 9). The probability that {𝑆ℓ }𝐿

ℓ=1
injects a

false commitment without being detected is AdvEU-CMAFSGN (𝑡′′, 𝑞𝐻 , 𝐿 ·𝑞𝑠),
under the Assumption 1, in time 𝑡′′.

AdvFHD-EU-CMAFLRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠 , 1) ≤ AdvDL
G,𝛼(𝑡′), 𝑡′ = 𝒪(𝑡) + 𝐿 · 𝒪(𝐽 · 𝜅3)

Proof: Let 𝒜 be a FLRSHA attacker and (𝑦 $← Z∗𝑞 , 𝑌 ← 𝛼𝑦

mod 𝑝) be a DLP challenge as in Definition 3. We set the

certification keys ({sk′ℓ , PK′ℓ }𝐿
ℓ=1

via FSGN.Kg. We then run the

simulator ℱ by Definition 5:

• Setup: ℱ manages the lists ℒℳ, ℒℋ , and ℒℛ, and

handles RO(.) queries via H-Sim as in Theorem 1. Per Definition

8, ℱ selects the maximum number of signatures as 𝐽, and then

selects an index 𝑤
$← [1, 𝐽] hoping that 𝒜 will output his

forgery on. ℱ continue as follows:

− sk Simulation: Set sk1 = ⟨®𝑦1 , ®𝑟1⟩ as in FLRSHA.Kg.

1: 𝑎ℓ ← ⟨𝑦ℓ
1
, 𝑟ℓ

1
, sk′ℓ ⟩, ∀ℓ = 1, . . . , 𝐿, and ®𝑎 = {𝑎ℓ }𝐿

ℓ=1

2: sk𝑗+1 ← FLRSHA.Upd(sk𝑗),∀𝑗 ∈ [1, 𝑤 − 2], where 𝐻 in

FLRSHA.Upd is simulated via H-Sim.

3: sk𝑤+1 = ⟨®𝑦𝑤+1 , ®𝑟𝑤+1⟩ as in FLRSHA.Kg.

4: sk𝑗+1 ← FLRSHA.Upd(sk𝑗),∀𝑗 ∈ [𝑤 + 1, 𝐽 − 1].
5: Add sk𝑗 to ℒℛ, ∀𝑗 ∈ [1, 𝑤 − 1] ∪ [𝑤 + 1, 𝐽] and ®𝑎 to ℒℛ.

− PK and ComC Simulation:

1: Retreive {sk𝑗} 𝑗∈[1,𝑤−1]∪[𝑤+1,𝐽] and ®𝑎 from ℒℛ.

2: for 𝑗 ∈ [1, 𝑤 − 1] ∪ [𝑤 + 1, 𝐽] do
3:

®𝑅 𝑗 ← {𝑅ℓ
𝑗
← 𝛼

𝑟ℓ
𝑗

mod 𝑞}𝐿
ℓ=1

and
®𝑌𝑗 ← {𝑌ℓ

𝑗
← 𝛼

𝑦ℓ
𝑗

mod 𝑞}𝐿
ℓ=1

. ℱ adds
®𝑌𝑗 and

®𝑅 𝑗 to ℒℛ.

4: 𝑠𝑤
$← Z∗𝑞 and 𝑒𝑤

$← Z∗𝑞 . ℱ adds 𝑠𝑤 and 𝑒𝑤 to ℒℛ.

5: 𝑌ℓ
𝑤

$← Z∗𝑝 and 𝑅ℓ
𝑤

$← Z∗𝑞 ,∀ℓ = 1, . . . 𝐿 − 1.

6: 𝑌𝐿
𝑤 ← 𝑌 ·∏𝐿−1

ℓ=1
(𝑌ℓ

𝑤)−1
mod 𝑝

7: 𝑅𝐿
𝑤 ← 𝑌𝑒𝑤 · 𝛼𝑠𝑤 ·∏𝐿−1

ℓ=1
(𝑅ℓ

𝑤)−1
mod 𝑝

8: Add
®𝑌𝑤 ← {𝑌ℓ

𝑤}𝐿ℓ=1
and

®𝑅𝑤 ← {𝑅ℓ
𝑤}𝐿ℓ=1

to ℒℛ.

• Query Phase: ℱ handles RO(.) and Break-In(.) queries

as in Theorem 1 and Definition 9, respectively. The rest of 𝒜’s

queries are as follows:

− FLRSHA.Sigsk𝑗 (.): If 𝑗 ≠ 𝑤 , then it retrieves sk𝑗 from

ℒℛ and computes 𝜎𝑗 as in FLRSHA.Sig. Otherwise, it retrieves

𝑠𝑤 from ℒℛ and returns 𝜎𝑗 = (𝑠𝑤 , 𝑥𝑤
$← {0, 1}𝜅 , 𝑤).

− FLRSHA.ComC®𝑎(.): ℱ retrieves (®𝑌𝑗 , ®𝑅 𝑗) from ℒℛ and com-

putes
®𝐶 𝑗 = { 𝐶ℓ

𝑗
← FSGN.Sig ®sk′(𝑌

ℓ
𝑗
, 𝑅ℓ

𝑗
) }𝐿

ℓ=1
. Finally, ℱ returns

(®𝑌𝑗 , ®𝑅 𝑗 , ®𝐶 𝑗) to 𝒜.

• Forgery and Extraction: 𝒜 outputs a forgery on PK as

(𝑀∗ , 𝜎∗), where 𝜎∗ = (𝑠∗ , 𝑥∗ , 𝑗). By Definition 9, 𝒜 wins if

FLRSHA.Ver(PK, 𝑀∗ , 𝜎∗) = 1, and 𝑀∗ ∉ ℒℳ. ℱ wins if

(i) 𝒜 wins, (ii) 𝒜 produces a forgery on 𝑗 = 𝑤 by query-

ing FLRSHA.ComC®𝑎(.) (i.e., (®𝑌𝑤 , ®𝑅𝑤) ∈ ℒℛ) and RO(.) (i.e.,

(𝑀∗∥𝑥∗) ∈ ℒℋ). If these conditions hold, then ℱ extracts 𝑦′

as in Theorem 1 extraction phase.

• Success Probability and Execution Time Analysis: The analysis

is similar to Theorem 1 except the forgery index must be on

𝑗 = 𝑤. That is, the probability that 𝒜 wins FHD-EU-CMA ex-

periment against FLRSHA is equal to AdvFHD-EU-CMAFLRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠 , 1).
ℱ wins the DLP experiment if 𝒜 outputs his forgery on

𝑗 = 𝑤. Since 𝑤 is randomly drawn from [1, 𝐽], the probability

that 𝒜 returns his forgery on 𝑗 = 𝑤 is 1/𝐽. The probabil-

ity that 𝒜 wins the experiment without querying RO(.) and

LRSHA.ComC®𝑎(.) are 1/2𝜅 and AdvEU-CMAFSGN (𝑡′′, 𝑞𝐻 , 𝐿 · 𝑞𝑠), respec-

tively. The execution time is asymptotically similar to that of

Theorem 1, where 𝑞𝑠 = 𝐽:

AdvFHD-EU-CMAFLRSHA (𝑡 , 𝑞𝐻 , 𝑞𝑠 , 1) ≤ AdvDL
G,𝛼(𝑡′), 𝑡′ = 𝒪(𝑡) + 2𝐿 · 𝐽 · 𝒪(𝜅3)

• Indistinguishability Argument: 𝒜’s real 𝒜𝑅 and simulated

𝒜𝑆 views are indistinguishable. The argument is as in Theorem

1, with the following differences: (i) In 𝒜𝑆 , the simulator uses

private keys that are randomly generated except during 𝑗 = 𝑤
where he injects the challenge 𝑌. These random variables are

identical to 𝒜𝑅 since 𝐻 is a random oracle. (ii) FSGN is used

to sign commitments in the transcripts instead of SGN. ■

6. Performance Analysis

We present a comprehensive performance evaluation of our

schemes with a detailed comparison with their counterparts.

6.1. Evaluation Metrics and Experimental Setup

Evaluation Metrics: We compare our proposed schemes and

their counterparts based on: (1) signing computational over-

head, (2) signature size, (3) private key size (including pre-

computed tables), (4) verification overhead, (5) public key size,

(6) performance in pre-computed, offline/online settings, (7)

forward-security, (8) collusion resiliency / false input detection,

(9) implementation features (e.g., online sampling, code base

simplicity), (10) impact on battery life.

Selection Rationale of Counterparts: We follow our related work

analysis in Section 1.1 as the guideline. Given that it is not

possible to compare our schemes with every single digital

signature, we focus on the most relevant categories to our

work, especially the ones having an open-source implemen-

tation on low-end devices: (i) ECDSA [30], BLS [34], RSA [10]

to cover the most prominent signatures, serving as a building

block for others. (ii) BLISS as the lattice-based (due to its

ability to run on an 8-bit MCU), SPHINCS+[72] (hash-based

on commodity hardware), and XMSS
MT

[52] as the forward-

secure standard. (iii) Alternative lightweight signatures with

TEE and/or cloud assistance (e.g., [15], [19]). (iv) We compare

our forward-secure FLRSHA with MMM transformed versions

of the most efficient signature schemes since it is proven to

be an asymptotically optimal generic forward-secure trans-

formation. We also compared FLRSHA with the most recent

hardware-assisted counterparts [15]. (v) We also provided a

comprehensive comparison when various signer optimizations

are considered, especially with pre-computation methods for

low-end devices (e.g., SCRA [45], BPV-variants, offline-online,

etc.). We also included the pre-computed version ESEM2 [19]

as an ECDLP-based cloud-assisted digital signature with dis-

tributed verification.

Parameter Selection: We selected the security parameter as 𝜅 =

128 and ASCON-Hasha [74] as our cryptographic hash function

𝐻. We used the Curve25519 [31] (as NIST’s FIPS 186-5 standard,

256-bit public keys) for our signature schemes. For BLS [34],

we selected the curve BLS12-381, having an embedding degree

equal to 12 and a 381 bit length. We selected XMSS
MT

which

allows 𝐽 = 2
20

messages to be signed. We also set an equal sign-

ing capability 𝐽 = 2
20

in our schemes, LRSHA and FLRSHA. We

selected Ed25519 as our standard signature scheme SGN that

serves to certify the commitments of LRSHA, while we opted for

Ed25519 with optimal generic MMM [23] as a forward-secure

FSGN for the ComC certification of FLRSHA. We discuss the

parameters and specifics of other counterparts in Table 2.

Table 2: Performance comparison of LRSHA and FLRSHA schemes and their counterparts on commodity hardware

Scheme Signer Verifier ComC Servers

Signing
Time (𝜇s)

Private
Key (KB)

Signature
Size (KB)

Forward
Security

Online
Sampling

Public
Key (KB)

Ver
Time (𝜇s)

Storage Per
Server (KB)

Comp. Per
Server Collusion

Resiliency
False
Input

Detection

Offline
Gen.Key

Gen.
Cert.
Gen.

ECDSA [30] 17.07 0.03 0.06 × ✓ 0.03 46.62

Ed25519 [31] 16.34 0.03 0.06 × ✓ 0.03 39.68

Ed25519-BPV [31] 19.96 1.03 0.06 × ✓ 0.03 39.68

Ed25519-MMM [31] 82.32 53.09 1.2 ✓ ✓ 0.03 267.04

BLS [34] 278.6 0.06 0.05 × ✓ 0.09 910.6
RSA-3072 [10] 1235.74 0.5 0.25 × ✓ 0.5 45.78 N/A

SCRA-BLS [45] 15.31 16.06 0.05 × × 0.09 43.52

SCRA-RSA [45] 22.99 2 MB 0.27 × × 0.53 51.2
BLISS-I [12] 241.3 2.00 5.6 × ✓ 7.00 24.61

SPHINCS+ [72] 5, 445.2 0.1 35.66 × × 0.05 536.14

XMSS
MT

[52] 10, 682.35 5.86 4.85 ✓ × 0.06 2, 098.84

HASES [15] 5.89 0.03 0.5 ✓ × 32 10.41 32 624.64 𝜇𝑠 N/A Central × ✓
ESEM2 [19] 10.34 12.03 0.05 × × 0.03 259.79 4.03 82.91 𝜇𝑠 N/A Semi-Honest × ×
LRSHA 3.23 0.06 0.05 × × 0.03 45.96 0.03 2.56 𝒎𝒔 22.67 𝝁𝒔 Protected ✓ ✓
FLRSHA 5.35 0.22 0.05 ✓ × 0.03 45.96 0.06 5.53 𝒎𝒔 82.32 𝝁𝒔 Protected ✓ ✓

The input message size is 32 bytes. The maximum number of signing for FS schemes is set to 𝐽 = 2
20

. The number of ComC servers is 𝐿 = 3. For SPHINICS+

parameters, 𝑛 = 16, ℎ = 66, 𝑑 = 22, 𝑏 = 6, 𝑘 = 33, 𝑤 = 16 and 𝜅 = 128. We benchmark the XMSSMT_SHA2_20_256 variant, allowing for 2
20

signings. HASES

parameters are (𝑙 = 256, 𝑡 = 1024, 𝑘 = 16). BPV parameters in ESEM2 are (𝑛 = 128, 𝑣 = 40). The parameter 𝑛 in RSA is 3072-bit. For SCRA-BLS and SCRA-RSA, we

set the optimal setting (𝐿 = 32, 𝑏 = 8). The online verification time of LRSHA and FLRSHA is similar to that of Ed25519. The (offline) aggregation of commitments for

LRSHA and FLRSHA is 9.1 𝜇𝑠 and 16.99 𝜇𝑠, respectively. However, in ESEM2, the verification includes the commitment aggregation (i.e., 𝑅). Indeed, the ComC servers

in ESEM require verifier input before generating the commitments. One can delegate the aggregation of partial commitments to a ComC server, but it will incur more

network delay.

Table 3: Performance comparison of LRSHA and FLRSHA schemes and their counterparts on 8-bit AVR ATmega2560 MCU

Scheme Signing
(Cycles)

Signing/Sensor
Energy Ratio (%)

Private
Key (KB)

Signature
Size (KB)

Forward
Security

Precomputation
Feasibility

Simple Code
Base

ECDSA [30] 79, 185, 664 93.75 0.03 0.05 × × ×
Ed25519 [31] 22, 688, 583 26.86 0.03 0.06 × × ×
BLISS-I [12] 10, 537, 981 12.48 2.00 5.6 × × ×
HASES [15] 1, 974, 528 2.34 0.05 0.5 ✓ × ✓
ESEM2 [19] 1, 555, 380 1.84 12.03 0.05 × ✓ ✓

LRSHA 498, 317 0.59 0.06 0.03 × ✓ ✓
FLRSHA 1, 602, 749 1.9 0.22 0.06 ✓ ✓ ✓

The input message size is 32 Bytes. ESEM2 incur a storage penalty of 12 KB at the signer side. The HORS parameters of HASES are (𝑙 = 256, 𝑡 = 1024, 𝑘 = 16).

Table 4: Signing efficiency of LRSHA and FLRSHA schemes via offline-online technique

Commodity Hardware (in 𝜇𝑠) 8-bit AVR ATmega2560 MCU (in Cycles) Additional
Storage

Cost
(KB) ★

Forward
SecurityScheme Offline Computation Online Computation Offline Computation Online Computation

Priv. Key
Comp.

Priv. Key
Upd. Total Signing Priv. Key

Comp.
Priv. Key

Upd. Total Signing
ESEM2 [19] 6.25 0 6.25 4.09 1, 006, 144 0 1, 006, 144 549, 236 96 ×
Ed25519-BPV [73] 17.82 0 17.82 2.14 298, 880 0 298, 880 549, 236 64 ×
LRSHA 1.83 0 1.83 1.4 376, 240 0 376, 240 121, 949 64 ×
FLRSHA 2.04 1.95 3.99 1.36 712, 800 767, 872 1, 480, 672 121, 949 128 ✓

The running time is in 𝜇𝑠 for commodity hardware and in cycles for 8-bit AVR ATmega2560. The input message size is 32 Bytes. The number of ComC servers (i.e.,

𝐿) is 3. The offline computation requires a storage penalty to save the computed keys in memory. SCRA-BLS and SCRA-RSA are not present due to the large private

key size and expensive signing, respectively, compared to that of Ed25519-BPV, as in Table 2. SCRA-BLS and SCRA-RSA perform 𝐿 EC point additions over a gap

group and 𝐿 modular multiplications over a large modulus (e.g., 𝑛 is 3072-bit), respectively. Consequently, we considered Ed25519-BPV as most efficient OO digital

signature.

★ LRSHA and FLRSHA require replenishment of additional stored data each 2
11

signings. For a total of 2
20

signings, replenishment of additional data is 512 times.

6.2. Performance on Commodity Hardware

We used a desktop with an Intel i9-9900K@3.6 GHz pro-

cessor and 64 GB of RAM. We also used ASCON1, OpenSSL2

and Intel SGX SSL3 open-source libraries. Table 2 illustrates

the overall performance of LRSHA and their counterparts at

the signer and verifier. Our main takeaways are as follows:

• Signing Time: LRSHA is 5× and 3.2× faster than ESEM2 and

standard Ed25519, respectively, but with a much smaller mem-

ory footprint than ESEM2. FLRSHA offer forward security with

only 1.65× decrease in speedup compared to LRSHA. Notably,

FLRSHA is significantly faster than its forward-secure coun-

terpart, XMSS
MT

by several orders of magnitude. HASES is also

1. https://github.com/ascon/ascon-c

2. https://github.com/openssl/openssl

3. https://github.com/intel/intel-sgx-ssl

post-quantum-secure but suffers from a central root of trust

that depends on a single hardware-supported ComC server

in order to distribute large-sized public keys to verifiers. In

contrast, FLRSHA distinguishes itself by employing a network

of distributed ComC servers, thereby mitigating the risk asso-

ciated with a single point of failure. Moreover, FLRSHA has a
magnitude times smaller signature than that of HASES.

• Signer Storage: LRSHA consumes 200× less memory on

resource-constrained signers compared to ESEM2. This is at-

tributed to the fact that ESEM stores a set of precomputed

commitments to enhance signing efficiency. FLRSHA also out-

performs the optimal generic forward-secure Ed25519-MMM

and XMSS
MT

by having 241× and 27× lesser memory usage,

respectively. FLRSHA consumes 7× more memory usage than

its signer-efficient counterpart HASES, but without having

a central root of trust on the ComC servers. Additionally,

https://github.com/ascon/ascon-c
https://github.com/openssl/openssl
https://github.com/intel/intel-sgx-ssl

LRSHA schemes avoid costly EC-based operations by only exe-

cuting simple arithmetic and symmetric operations.

• Signature Size: LRSHA has the smallest signature size

among all counters, with a significant signing computational

efficiency at its side. Only BLS have slightly larger (i.e.,

1.5×) signature size, while its signing operates at an order

of magnitude slower pace compared to our scheme. Simi-

larly, FLRSHA surpasses its most signer-efficient forward-secure

counterpart HASES with a 8.33× smaller signature. Conse-

quently, LRSHA schemes prove to be the most resource-efficient

in terms of processing, memory, and bandwidth.

• Verification Time: We consider: (i) computation of com-

mitments at the ComC servers, (ii) network delay to transmit

commitments and their signatures to the verifier, (iii) signature

verification time at the verifier.

Unlike some other alternatives with distributed server sup-

port (e.g., [19]), our schemes permit an offline pre-computation

of the commitments at ComC servers. This significantly re-

duces the verification delay to a mere 46𝜇𝑠 for both LRSHA and

FLRSHA. Moreover, verifiers may request public commitments

in batches by sending a set of counters. FLRSHA’s verification

is slower than our fastest forward-secure hardware-assisted

counterpart, HASES. However, in return, FLRSHA offers a mag-

nitude of smaller signature sizes, faster signing, and resiliency

against single-point failures.

• Enhanced Security Properties: We demonstrated that

FLRSHA offers a superior performance trade-off. Our most

efficient counterparts assume semi-honest and non-colluding

server(s), are not forward-secure, and do not authenticate the

commitment. In contrast, (i) LRSHA is forward-secure, (ii) lever-

ages a set of SGX-supported ComC servers to ensure resiliency

against collusions and single-point failures, (iii) authenticates

all commitments to detect false inputs, (iv) avoids online sam-

pling operations (unlike lattice-based schemes) and random

number derivations, all of which are error-prone, especially on

low-end embedded devices, (v) it avoids using Forking Lemma,

and therefore has tighter security reduction than traditional

Schnorr-based signatures (with the aid of distributed verifica-

tion process).

6.3. Performance on 8-bit AVR Microcontroller

Hardware and Software Configuration: We fully implemented

LRSHA schemes on an 8-bit AVR ATmega2560 Micro-Controller

Unit (MCU) at the signer side. This MCU is an 8-bit AT-

mega2560, having 256KB flash memory, 8KB SRAM, and 4KB

EEPROM operating at a clock frequency of 16MHz. We used

the 𝜇NaCl open-source software library to implement the EC-

related operations and ASCON open-source software for cryp-

tographic hash operations.

Performance Analysis: Table 3 compares the signing costs of our

schemes with their counterparts on an 8-bit AVR MCU.

• Signing: LRSHA is 35.5× and 3× faster than the standard

Ed25519 and ESEM, respectively. Table 4 showcases the signing

efficiency of the most efficient candidate when pre-computation

is considered. In our variant, the signer pre-computes symmet-

ric keys via PRF calls to store them in memory offline and use

them to generate signatures online. This strategy pushes the

already efficient signing to the edge. For instance, the forward-

secure FLRSHA with pre-computation is 8.5× and 3× faster than

Ed25519-BPV and pre-computed ESEM2, respectively, which

are not FS.

0 5 10 15 20 25 30 35

Number	of	signing	operations	(x105)

0

10

20

30

40

50

60

70

80

90

100

B
at
te
ry
	s
ta
tu
s	
(%
)

ECDSA
Ed25519
BLISS-I
HASES
ESEM2
LRSHA
FLRSHA

Figure 4: Impact of signing operations on the battery lifetime

for LRSHA and FLRSHA schemes and their counterparts

• Energy Consumption: Table 3 depicts a comparative anal-

ysis of energy usage between LRSHA and FLRSHA schemes

with their respective counterparts on the selected MCU device.

Specifically, we connected a pulse sensor to the 8-bit MCU.

Then, we contrast the energy usage of a single sampling read-

ing from the pulse sensor with that of a single signature gen-

eration. Our experiments validate that LRSHA and FLRSHA ex-

hibit superior performance when compared to the selected

alternatives. This makes them the most suitable choices for

deployment on resource-limited IoTs.

Figure 4 illustrates the impact of signing operations on

an 8-bit MCU. Consistent with Table 3, it reaffirms the ef-

ficacy of our schemes in prolonging low-end device battery

life. LRSHA shows the longest battery life, depleting after 2
30

signings. FLRSHA, though slightly less efficient than ESEM2,

offers collusion resilience and authenticated decentralized ver-

ification without a single root of trust or key escrow, extending

battery life beyond HASES.

7. Conclusion

In this paper, we developed two new digital signatures

referred to as Lightweight and Resilient Signatures with Hardware
Assistance (LRSHA) and its forward-secure version (FLRSHA).

Our schemes harness the commitment separation technique

to eliminate the burden of generation and transmission of

commitments from signers and integrate it with a key evo-

lution strategy to offer forward security. At the same time,

they introduce hardware-assisted ComC servers that permit

an authenticated and breach-resilient construction of one-time

commitments at the verifier without interacting with signer.

We used Intel-SGX to realize distributed verification approach

that mitigates the collusion concerns and reliance on semi-

honest servers while avoiding single-point failures in central-

ized hardware-assisted signatures. Our distributed verification

also permits offline construction of one-time commitments be-

fore the signature verification, thereby offering a fast online

verification.

Our new approaches translate into significant performance

gains while enhancing breach resilience on both the signer

and verifier sides. Specifically, to the best of our knowledge,

FLRSHA is the only FS signature that has a comparable ef-

ficiency to a few symmetric MAC calls, with a compact sig-

nature size, but without putting a linear public key overhead

or computation burden on the verifiers. Our signing process

only relies on simple modular arithmetic operations and hash

calls without online random number generation and therefore

avoids complex arithmetics and operations that are shown to

be prone to certain types of side-channel attacks, especially on

low-end devices. We formally prove the security of our schemes

and validate their performance with full-fledged open-source

implementations on both commodity hardware and 8-bit AVR

microcontrollers. We believe that our findings will foster fur-

ther innovation in securing IoT systems and contribute to the

realization of a more secure and resilient IoT infrastructure.

References

[1] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,

“Internet of things (iot) for next-generation smart systems: A

review of current challenges, future trends and prospects for

emerging 5g-iot scenarios,” Ieee Access, vol. 8, pp. 23 022–23 040,

2020.

[2] A. El Saddik, F. Laamarti, and M. Alja’Afreh, “The potential

of digital twins,” IEEE Instrumentation & Measurement Magazine,
vol. 24, no. 3, pp. 36–41, 2021.

[3] P. B. Adamson, “Pathophysiology of the transition from chronic

compensated and acute decompensated heart failure: New in-

sights from continuous monitoring devices,” Current heart failure
reports, vol. 6, no. 4, pp. 287–292, 2009.

[4] B. Glas, J. Guajardo, H. Hacioglu, M. Ihle, K. Wehefritz, and

A. A. Yavuz, Signal-based automotive communication security and its
interplay with safety requirements, ESCAR, Embedded Security in

Cars Conference, Germany, November 2012, 2012.

[5] P. M. Rao and B. Deebak, “A comprehensive survey on authen-

tication and secure key management in internet of things: Chal-

lenges, countermeasures, and future directions,” Ad Hoc Networks,
p. 103 159, 2023.

[6] A. A. Yavuz, K. Sedghighadikolaei, S. Darzi, and S. E. Nouma,

“Beyond basic trust: Envisioning the future of nextgen networked

systems and digital signatures,” in 2023 5th IEEE International
Conference on Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA), 2023, pp. 267–276.

[7] A. Mudgerikar and E. Bertino, “Iot attacks and malware,” Cyber
Security Meets Machine Learning, pp. 1–25, 2021.

[8] G. Avoine, S. Canard, and L. Ferreira, “Symmetric-key authenti-

cated key exchange (sake) with perfect forward secrecy,” in Topics
in Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA
Conference 2020, February 24–28, 2020, pp. 199–224.

[9] S. E. Nouma and A. A. Yavuz, “Lightweight digital signatures for

internet of things: Current and post-quantum trends and visions,”

in 2023 IEEE Conference on Dependable and Secure Computing (DSC),
2023, pp. 1–2.

[10] J. H. Seo, “Efficient digital signatures from rsa without random

oracles,” Information Sciences, vol. 512, pp. 471–480, 2020.

[11] C. Peng, M. Luo, L. Li, K.-K. R. Choo, and D. He, “Efficient

certificateless online/offline signature scheme for wireless body

area networks,” IEEE Internet of Things Journal, vol. 8, no. 18,

pp. 14 287–14 298, 2021.

[12] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice

signatures and bimodal gaussians,” in Advances in Cryptology –
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, R. Canetti and

J. A. Garay, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 40–56.

[13] R. Behnia and A. A. Yavuz, “Towards practical post-quantum

signatures for resource-limited internet of things,” in Annual Com-
puter Security Applications Conference, 2021, pp. 119–130.

[14] X. Chen, S. Xu, Y. He, Y. Cui, J. He, and S. Gao, “Lfs-as:

Lightweight forward secure aggregate signature for e-health sce-

narios,” in IEEE International Conference on Communications (ICC),
IEEE, 2022, pp. 1239–1244.

[15] S. E. Nouma and A. A. Yavuz, “Post-quantum forward-secure

signatures with hardware-support for internet of things,” in IEEE
International Conference on Communications (ICC), 2023, pp. 4540–

4545.

[16] A. A. Yavuz, “Eta: Efficient and tiny and authentication for het-

erogeneous wireless systems,” in Proceedings of the sixth ACM
conference on Security and privacy in wireless and mobile networks,
ser. WiSec ’13, Budapest, Hungary, 2013, pp. 67–72.

[17] A. C.-C. Yao and Y. Zhao, “Online/offline signatures for low-

power devices,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 2, pp. 283–294, 2012.

[18] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid

one-time signature for time-critical multicast data authentication,”

in INFOCOM 2009, IEEE, 2009.

[19] M. O. Ozmen, R. Behnia, and A. A. Yavuz, “Energy-aware digital

signatures for embedded medical devices,” in 7th IEEE Conf. on
Communications and Network Security (CNS), June, 2019.

[20] C. Camara, P. Peris-Lopez, and J. E. Tapiador, “Security and

privacy issues in implantable medical devices: A comprehensive

survey,” Journal of Biomedical Informatics, vol. 55, pp. 272 –289, 2015.

[21] D. Ma, “Practical forward secure sequential aggregate signatures,”

in Proceedings of the 3rd ACM symposium on Information, Computer
and Communications Security (ASIACCS ’08), 2008, pp. 341–352.

[22] E. U. A. Seyitoglu, A. A. Yavuz, and M. O. Ozmen, “Compact and

resilient cryptographic tools for digital forensics,” in IEEE Conf.
on Communications and Network Security (CNS), 2020, pp. 1–9.

[23] T. Malkin, D. Micciancio, and S. K. Miner, “Efficient generic

forward-secure signatures with an unbounded number of time

periods,” in Proc. of the 21th International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT ’02),
Springer-Verlag, 2002, pp. 400–417.

[24] A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: Efficient

and publicly verifiable cryptographic schemes for secure logging

in resource-constrained systems,” ACM Transaction on Information
System Security, vol. 15, no. 2, 2012.

[25] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi, “Side-

channel attacks on bliss lattice-based signatures: Exploiting

branch tracing against strongswan and electromagnetic ema-

nations in microcontrollers,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,

pp. 1857–1874.

[26] W. Ouyang, Q. Wang, W. Wang, J. Lin, and Y. He, “SCB: Flexi-

ble and Efficient Asymmetric Computations Utilizing Symmetric

Cryptosystems Implemented with Intel SGX,” in 2021 IEEE In-
ternational Performance, Computing, and Communications Conference
(IPCCC), 2021, pp. 1–8.

[27] A. A. Yavuz and S. Nouma, Hardware supported authentication and
signatures for wireless, distributed and blockchain systems, US Patent

App. 18/188,749, 2023.

[28] J. Liu, J. Yang, W. Wu, X. Huang, and Y. Xiang, “Lightweight

authentication scheme for data dissemination in cloud-assisted

healthcare iot,” IEEE Transactions on Computers, vol. 72, no. 5,

pp. 1384–1395, 2022.

[29] C. Wang, D. Wang, Y. Duan, and X. Tao, “Secure and lightweight

user authentication scheme for cloud-assisted internet of things,”

IEEE Transactions on Information Forensics and Security, 2023.

[30] ANSI X9.62-1998: public key cryptography for the financial services in-
dustry: The elliptic curve digital signature algorithm (ECDSA), Amer-

ican Bankers Association, 1999.

[31] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang,

“High-speed high-security signatures,” Journal of Cryptographic
Engineering, vol. 2, no. 2, pp. 77–89, 2012, issn: 2190-8516.

[32] T. Li, H. Wang, D. He, and J. Yu, “Permissioned blockchain-

based anonymous and traceable aggregate signature scheme for

industrial internet of things,” IEEE Internet of Things Journal, vol. 8,

no. 10, pp. 8387–8398, 2020.

[33] S. E. Nouma and A. A. Yavuz, “Lightweight digital signatures for

internet of things: Current and post-quantum trends and visions,”

in 2023 IEEE Conf. on Dependable and Secure Computing (DSC),
IEEE, 2023, pp. 1–2.

[34] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the

weil pairing,” J. Cryptol., vol. 17, no. 4, 297–319, 2004.

[35] A. Boldyreva, C. Gentry, A. O’Neill, and D. Yum, “Ordered mul-

tisignatures and identity-based sequential aggregate signatures,

with applications to secure routing,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, (CCS
’07), Alexandria, Virginia, USA: ACM, 2007, pp. 276–285.

[36] M. Drĳvers, S. Gorbunov, G. Neven, and H. Wee, “Pixel: Multi-

signatures for consensus.,” in USENIX Security Symposium, 2020,

pp. 2093–2110.

[37] M. A. R. Baee, L. Simpson, X. Boyen, E. Foo, and J. Pieprzyk,

“On the efficiency of pairing-based authentication for connected

vehicles: Time is not on our side!” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3678–3693, 2021.

[38] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time sig-

natures with fast signing and verifying,” in Information Security
and Privacy: 7th Australasian Conference, 2002, pp. 144–153, isbn:

978-3-540-45450-2.

[39] A. Shamir and Y. Tauman, “Improved online/offline signature

schemes,” in Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’01, London,

UK: Springer-Verlag, 2001, pp. 355–367.

[40] C. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[41] V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete

log and factoring based schemes via precomputations,” in Ad-
vances in Cryptology — EUROCRYPT’98: International Conference on
the Theory and Application of Cryptographic Techniques Espoo, Finland,
May 31 – June 4, 1998, 1998, pp. 221–235.

[42] R. Behnia, M. O. Ozmen, and A. A. Yavuz, “ARIS: Authentication

for real-time IoT systems,” in 53rd IEEE International Conference on
Communications (ICC), Shanghai, China, 2019.

[43] G. Ateniese, G. Bianchi, A. Capossele, and C. Petrioli, “Low-

cost standard signatures in wireless sensor networks: A case for

reviving pre-computation techniques?” In Proc. of NDSS 2013,

2013.

[44] J.-S. Coron and A. Gini, “A polynomial-time algorithm for solving

the hidden subset sum problem,” in Annual International Cryptol-
ogy Conference, Springer, 2020, pp. 3–31.

[45] A. A. Yavuz, A. Mudgerikar, A. Singla, I. Papapanagiotou, and E.

Bertino, “Real-time digital signatures for time-critical networks,”

IEEE Transactions on Information Forensics and Security, vol. 12,

no. 11, pp. 2627–2639, 2017.

[46] A. A. Yavuz and M. O. Ozmen, “Ultra lightweight multiple-

time digital signature for the internet of things devices,” IEEE
Transactions on Services Computing, vol. 15, no. 1, pp. 215–227, 2019.

[47] G. Zaverucha and D. Stinson, Short one-time signatures, Cryptology

ePrint Archive, Report 2010/446, 2010.

[48] F. Lang, W. Wang, L. Meng, J. Lin, Q. Wang, and L. Lu, “Mole:

Mitigation of side-channel attacks against sgx via dynamic data

location escape,” in Proceedings of the 38th Annual Computer Security
Applications Conference, 2022, pp. 978–988.

[49] M. Bellare and S. Miner, “A forward-secure digital signature

scheme,” in Advances in Crpytology), 1999, pp. 431–448.

[50] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal

signing and verifying,” in Advances in Cryptology (CRYPTO ’01),
Springer-Verlag, 2001, pp. 332–354.

[51] M. Abdalla and L. Reyzin, “A new forward-secure digital sig-

nature scheme,” in Advances in Crpytology (ASIACRYPT ’00),
Springer-Verlag, 2000, pp. 116–129.

[52] D. A. Cooper, D. C. Apon, Q. H. Dang, M. S. Davidson, M. J.

Dworkin, C. A. Miller, et al., “Recommendation for stateful hash-

based signature schemes,” NIST Special Publication, vol. 800, p. 208,

2020.

[53] A. Hülsing, C. Busold, and J. Buchmann, “Forward secure signa-

tures on smart cards: Preliminary version,” in International Confer-
ence on Selected Areas in Cryptography, Springer, 2012, pp. 66–80.

[54] X. Zhou, M. Luo, P. Vĳayakumar, C. Peng, and D. He, “Efficient

certificateless conditional privacy-preserving authentication for

vanets,” IEEE Transactions on Vehicular Technology, vol. 71, no. 7,

pp. 7863–7875, 2022.

[55] W. Yang, S. Wang, and Y. Mu, “An enhanced certificateless ag-

gregate signature without pairings for e-healthcare system,” IEEE
Internet of Things Journal, vol. 8, no. 6, pp. 5000–5008, 2020.

[56] R. Behnia, A. A. Yavuz, M. O. Ozmen, and T. H. Yuen, “Com-

patible certificateless and identity-based cryptosystems for het-

erogeneous IoT,” in Information Security Conference (ISC), Cham:

Springer International Publishing, 2020, pp. 39–58.

[57] M. Jiang, D. H. Duong, and W. Susilo, “Puncturable signature: A

generic construction and instantiations,” in European Symposium
on Research in Computer Security, Springer, 2022, pp. 507–527.

[58] X. Chen, Q. Huang, H. Li, Z. Liao, and W. Susilo, “A novel

identity-based multi-signature scheme over ntru lattices,” Theo-
retical Computer Science, vol. 933, pp. 163–176, 2022.

[59] K. Sedghighadikolaei and A. A. Yavuz, “A comprehensive sur-

vey of threshold digital signatures: Nist standards, post-quantum

cryptography, exotic techniques, and real-world applications,”

arXiv preprint arXiv:2311.05514, 2023.

[60] H. W. Wong, J. P. Ma, H. H. Yin, and S. S. Chow, “Real threshold

ecdsa.,” in NDSS, 2023.

[61] W. Zheng, C.-F. Lai, D. He, N. Kumar, and B. Chen, “Secure stor-

age auditing with efficient key updates for cognitive industrial iot

environment,” IEEE Transactions on Industrial Informatics, vol. 17,

no. 6, pp. 4238–4247, 2020.

[62] G. Ateniese, G. Bianchi, A. T. Capossele, C. Petrioli, and D. Spenza,

“Low-cost standard signatures for energy-harvesting wireless sen-

sor networks,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3,

64:1–64:23, 2017.

[63] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rĳneveld, and A. Mohaisen,

XMSS: eXtended Merkle Signature Scheme, RFC 8391, May 2018. doi:

10.17487/RFC8391.

[64] T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-

secure signatures with an unbounded number of time periods,”

in International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 2002, pp. 400–417.

[65] D. Genkin, L. Valenta, and Y. Yarom, “May the fourth be with you:

A microarchitectural side channel attack on several real-world

applications of curve25519,” in Proc. of the 2017 ACM SIGSAC Conf.
on Computer and Communications Security, 2017, pp. 845–858.

[66] C. Costello and P. Longa, “Schnorrq: Schnorr signatures on fourq,”

MSR Tech Report, 2016.

https://doi.org/10.17487/RFC8391

[67] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC

press, 2020.

[68] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-

ware extensions for strong software isolation,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 857–874.

[69] R. D. Silva, I. Navaratna, M. Kumarasiri, J. Alawatugoda, and

C. C. Wen, “On power analysis attacks against hardware stream

ciphers,” Intern. J. of Information and Computer Security, vol. 17,

no. 1-2, pp. 21–35, 2022.

[70] R. Behnia and A. A. Yavuz, “Towards practical post-quantum

signatures for resource-limited internet of things,” in Annual
Computer Security Applications Conference. New York, NY, USA:

Association for Computing Machinery, 2021, 119–130, isbn:

9781450385794.

[71] S. E. Nouma and A. A. Yavuz, “Practical cryptographic forensic

tools for lightweight internet of things and cold storage systems,”

in Proc. of the 8th ACM/IEEE Conf. on Internet of Things Design and
Implementation, 2023, pp. 340–353.

[72] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rĳn-

eveld, and P. Schwabe, “The SPHINCS+ signature framework,”

in Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, 2019, pp. 2129–2146.

[73] M. O. Ozmen and A. A. Yavuz, “Dronecrypt - an efficient crypto-

graphic framework for small aerial drones,” in 2018 IEEE Military
Communications Conference, MILCOM 2018, Los Angeles, CA, USA,
October 29-31, 2018, 2018, pp. 1–6.

[74] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon

v1. 2: Lightweight authenticated encryption and hashing,” Journal
of Cryptology, vol. 34, pp. 1–42, 2021.

Saif Eddine Nouma received his bachelor’s
degree from Ecole Polytechnique de Tunisie,
Tunisia. He is currently pursuing a Ph.D. de-
gree in the Department of Computer Science
and Engineering, University of South Florida. His
research interests include lightweight cryptogra-
phy for Internet of Things, digital twins, and post-
quantum cryptography.

Dr. Attila Altay Yavuz is an Associate Profes-
sor in the Department of Computer Science and
Engineering, and the Director of Applied Cryp-
tography Research Laboratory at the University
of South Florida (USF). He was an Assistant
Professor in the School of Electrical Engineer-
ing and Computer Science, Oregon State Uni-
versity (2014-2018) and in the Department of
Computer Science and Engineering, USF (2018-
June 2021). He was a member of the security
and privacy research group at the Robert Bosch

Research and Technology Center North America (2011-2014). He re-
ceived his Ph.D. degree in Computer Science from North Carolina State
University (2011). He received his MS degree in Computer Science
from Bogazici University (2006) in Istanbul, Turkey. He is broadly in-
terested in the design, analysis, and application of cryptographic tools
and protocols to enhance the security of computer systems. Attila Altay
Yavuz is a recipient of the NSF CAREER Award, Cisco Research Award
(thrice - 2019,2020,2022), unrestricted research gifts from Robert Bosch
(five times), USF Faculty Outstanding Research Achievement Award,
USF Excellence in Innovation Award, and USF College of Engineering’s
Outstanding Research Achievement Award. His research on privacy-
enhancing technologies and intra-vehicular network security is in the
process of technology transfer with potential worldwide deployments.
He has authored more than 95 products including research articles in
top conferences, journals, and patents. He is a senior member of IEEE.

	Introduction
	Related Work
	Our Contribution and Desirable Properties

	Preliminaries
	System, threat, and security models
	System Model
	Threat and Security Model

	Proposed Schemes
	Lightweight and Resilient Signature with Hardware Assistance (LRSHA)
	Forward-secure Lightweight and Resilient Signature with Hardware Assistance (FLRSHA)

	Security Analysis
	Performance Analysis
	Evaluation Metrics and Experimental Setup
	Performance on Commodity Hardware
	Performance on 8-bit AVR Microcontroller

	Conclusion
	Biographies
	Saif Eddine Nouma
	Dr. Attila Altay Yavuz

