
Signer-Optimal Multiple-Time Post-Quantum
Hash-Based Signature for Heterogeneous IoT Systems

Kiarash Sedghighadikolaeia,∗, Attila A. Yavuza, Saif E. Noumaa

aDepartment of Computer Science and Engineering
University of South Florida, Tampa, FL, USA

Abstract

Heterogeneous Internet of Things (IoTs) harboring resource-limited devices
like wearable sensors are essential for next-generation networks. Ensuring the
authentication and integrity of security-sensitive telemetry in these applications
is vital. Digital signatures provide scalable authentication with non-repudiation
and public verifiability, making them essential tools for IoTs. However, emerg-
ing quantum computers necessitate post-quantum (PQ) secure solutions, yet ex-
isting NIST-PQC standards are costlier than their conventional counterparts and
unsuitable for resource-limited IoTs. There is a significant need for lightweight
PQ-secure digital signatures that respect the resource constraints of low-end IoTs.

We propose a new multiple-time hash-based signature called Maximum Uti-
lization Multiple HORS (MUM-HORS) that offers PQ security, short signatures,
fast signing, and high key utilization for an extended lifespan. MUM-HORS ad-
dresses the inefficiency and key loss issues of HORS in offline/online settings by
introducing compact key management data structures and optimized resistance to
weak-message attacks. We tested MUM-HORS on two embedded platforms (ARM
Cortex A-72 and 8-bit AVR ATmega2560) and commodity hardware. Our exper-
iments confirm up to 40× better utilization with the same signing capacity (220

messages, 128-bit security) compared to multiple-time HORS while achieving
2× and 156-2463× faster signing than conventional-secure and NIST PQ-secure
schemes, respectively, on an ARM Cortex. These features make MUM-HORS ideal
multiple-time PQ-secure signature for heterogeneous IoTs.

∗Corresponding author
Email addresses: kiarashs@usf.edu (Kiarash Sedghighadikolaei),

attilaayavuz@usf.edu (Attila A. Yavuz), saifeddinenouma@usf.edu (Saif E.
Nouma)

Preprint submitted to peer-reviewed journal November 5, 2024

ar
X

iv
:2

41
1.

01
38

0v
1

 [
cs

.C
R

]
 2

 N
ov

 2
02

4

Keywords: Lightweight cryptography; post-quantum security; Internet of Things
(IoT); digital signatures; data structures.

1. Introduction

Authentication and integrity are essential for safeguarding sensitive data in
next-generation networked systems, enabling the growth of the Internet of Things
(IoT) across sectors like healthcare [1], military [63], and industry [72]. In health-
care, wearable devices transmit critical medical data, such as heartbeats and blood
sugar levels, where compromised information can adversely affect individual health
and security, underscoring the necessity for robust data protection measures.

Digital signatures provide scalable authentication with non-repudiation and
public verifiability and, therefore, offer a trustworthy authentication alternative
for embedded medical settings [60, 22, 68, 92]. However, traditional signatures
like RSA [76] and ECDSA [47] are resource-intensive (due to operations such as
modular exponentiation and elliptic curve scalar multiplication), causing perfor-
mance degradation, leading to issues like frequent battery replacements in embed-
ded medical devices [67, 5, 90]. There are lightweight conventional alternatives
often employing a pre-computation approach [88] to reduce computation but in fa-
vor of increased storage. Hence, optimizing storage and computational efficiency
is essential for extending device utility. Besides performance hurdles, emerg-
ing quantum computers can break these conventional-secure signatures and their
aforementioned lightweight variants via Shor’s algorithm [82]. Therefore, there
is a critical need for PQ-secure digital signatures that can respect the resource
limitations of low-end (embedded) IoT medical devices and applications.

NIST has standardized three classes of PQ-safe signatures [2, 26]: Lattice-
based (LB) CRYSTALS-Dilithium [29] and FALCON [34], and hash-based (HB)
SPHINCS+ [15]. Dilithium is based on Fiat-Shamir with Aborts [56] and offers
a compact public key size but with larger signatures. Falcon relies on a hash-
and-sign scheme using NTRU lattices [30] but necessitates more complex opera-
tions and floating-point arithmetic. Both are more computationally intensive, with
large keys and signatures compared to their conventional counterparts, making
them unsuitable for highly resource-limited devices. For instance, Dilithium and
Falcon-512 are 10-77× slower than ECDSA and SchnorrQ on ARM Cortex A-72
and require substantial storage (117KB for Falcon-512, 113KB for Dilithium on
ARM Cortex-M4) [49]. There are lightweight PQ-secure signatures that harness
honest-but-curious verification servers with threshold control [9] and secure en-
claves (e.g., Intel SGX [59]) for efficient verification and forward security [66].

2

However, these special architectural and security assumptions may hinder their
adaptation to some IoT applications as well as introduce potential security risks
(e.g., secure enclave vulnerabilities [85]).
HB standards like XMSS [19] and SPHINCS+ [15] provide strong PQ se-

curity through hash functions with minimal assumptions. They build upon Few
Time Signatures (FTSs) [75, 54, 18] that permit efficient signing but only for a few
messages. Stateful schemes like XMSSMT rely on Merkle Hash Trees (MHT) to
enable Multiple-Time Signatures (MTS) from FTS, while stateless schemes such
as SPHINCS+ use hypertree structures. Despite their merits, the signer overhead
of these schemes is even higher than that of their lattice-based PQ-secure counter-
parts. Instead of general-purpose tree-based approaches, an alternative MTS is a
conventional-secure public-key-based online/offline model. In this approach, pub-
lic keys are pre-computed and stored at the verifier, while a hash-chain strategy is
used at the signer with near-optimal efficiency [89, 93]. However, a straightfor-
ward transformation of FTSs such as HORS signatures [75] into MTS via such
an online/offline approach is shown to be inefficient [89]. For instance, a HORS
configuration with relatively short signatures leads to a key discard rate as high
as 98%, even without considering weak message security [6]. These high loss
rates are detrimental to the life span and practicality of the target application. In
Section 7, we provide a more comprehensive revision of various alternative signa-
tures and their pros and cons for low-end heterogeneous IoT applications. Over-
all, the state-of-the-art analysis suggests that there is a vital need for lightweight
HB signatures that permit multiple-time signature generation capability but with
significantly better signer performance than existing PQ-secure alternatives.

1.1. Our Contribution
We created a new multiple-time hash-based signature referred to Maximum

Utilization Multiple HORS (MUM-HORS), which is specifically signed for hetero-
geneous IoT applications with embedded/wearable medical devices as a represen-
tative use case. MUM-HORS achieves PQ security with fast signing and compact
signatures while permitting maximum public key utilization and key message se-
curity. Central to our scheme is a storage-efficient, fixed-size 2D bitmap for key
management that facilitates efficient key derivation, public key management, sig-
nature failures, and weak-message security. We further outline the desirable fea-
tures of our scheme as follows:
• Fast Signing and Efficient Weak Message Resiliency: The signing process of

MUM-HORS is similar to efficient HORS, offering fast signing, short signatures,

3

and lower energy consumption. Additionally, we present an optimized mitiga-
tion method for weak message attacks [6] using XOR operations, which is sig-
nificantly more efficient than techniques in HORSIC [54], HORSIC+ [55], and
PORS [7]. We evaluated the signing efficiency (cycles and energy consumption)
of MUM-HORS on various devices, including two embedded platforms (ARM Cor-
tex A-72 and 8-bit AVR ATmega2560) and a commodity device. For instance, on
the ARM Cortex A-72 (Table 1), MUM-HORS is faster by 24× than Falcon-512,
by 200× than Dilithium, by 3900× than SPHINCS+, by 243-670× than XMSS
variants, and even by 1.5-2× than conventional-secure schemes like ECDSA,
Ed25519, and SchnorrQ.
•Compact Key Management Data Structures: Our key management data struc-

ture remains a small-constant size while offering a high capacity of signature gen-
eration. For instance, the size of our data structure is bounded as low as 1.4KB for
a signing capacity of 220 signatures with 128-bit security, matching state-of-the-art
multiple-time schemes like XMSS [20] and [89, 93]. We provide a comprehensive
theoretical and numerical analysis of the stability and accuracy of our data struc-
tures, ensuring they remain compact and practical even for highly constrained
devices (e.g., 8-bit AVR ATmega2560).
• Full-fledge Implementation: MUM-HORS full implementation is available at:

https://github.com/kiarashsedghigh/mumhors

Potential Use Cases - Prioritizing Signer Optimality for Heterogeneous IoT
Settings: MUM-HORS is a multiple-time signature designed for delay-tolerant and
heterogeneous IoT applications that prioritizes signer efficiency and security (see
Section 3). A typical application considered in state-of-the-art multiple-time sig-
natures (e.g., [89, 93, 66]) is medical wearables (e.g., [33, 4]) and sensory devices
in digital twins [3]. In these use cases, the battery-powered IoT device regu-
larly takes measurements, digitally signs them, and periodically uploads them to
a resourceful cloud server. Ensuring battery longevity, minimal cryptographic
resource usage and long-term PQ security of the low-end device is of utmost im-
portance. To enable this, MUM-HORS, as in conventional-secure multiple-time
alternatives [89, 93, 66], relies on an offline/online public-strategy that requires
pre-computed public keys to be stored in a resource verifier (e.g., cloud server).
As discussed further in Section 7, this heterogeneous public-key model deviates
from general-purpose signatures that rely on MHT or hypertrees (e.g., XMSS,
SPHINCS) to avoid extreme burden on the signer in exchange for more stor-
age on the cloud server. This is shown to be a highly favorable trade-off since

4

https://github.com/kiarashsedghigh/mumhors

a cloud server can maintain a larger public key to enable the optimized security
and longevity of low-end devices in consideration, an aspect of heterogeneous
computing in IoTs.

Table 1: Comparison of Signature Schemes on ARM Cortex A-72 (κ = 128-bit security)

Scheme Signature Generation Private
key (KB)

Signature
Size (KB)

PQ
Promise

Sampling
Operations

Deterministic
Signing8-bit AVR ATmega (cycles) ARM Cortex A-72 (µs)

Full-time Signatures (M = 2κ)
ECDSA [47] 79 185 664 249.021 0.031 0.046 ✗ ✗ ✗

Ed25519 [48] 22 688 583 212.176 0.031 0.062 ✗ ✗ ✓

SchnorrQ [23] 3 740 000 196.395 0.031 0.062 ✗ ✗ ✓

Falcon-512 [34] N/A 2 047.791 1.25 0.67 ✓ ✓ ✗

Dilithium-II [32] N/A 16 522.331 2.46 2.36 ✓ ✓ ✗

SPHINCS+ [15] N/A 320 196.960 0.062 16.67 ✓ ✗ ✓

M -time Signatures (M = 220)
SEMECS [89] 195 776 5.83 0.031 0.031 ✗ ✗ ✓

HORS [75] 342 976 46.8 0.031 0.78 ✓ ✗ ✓

∗HORSE [62]
342 976 46.69 790 MB 0.078

✓ ✗ ✓
4 979 776 682.52 480 0.078

∗∗MSS [77] 5 792 000 N/A 1.438 2.295 ✓ ✗ ✓

XMSS [19] N/A 20 943.975 1.34 2.44 ✓ ✗ ✓

XMSSMT [42] N/A 55 099.507 5.86 4.85 ✓ ✗ ✓

MUM-HORS 637 376 129.32 1.43 0.78 ✓ ✗ ✓

The parameter setting is as in Table 2. To the best of our knowledge, there is no reported benchmark on an 8-bit micro-
controller for XMSS variants, Falcon-512, Dilithium-II, and SPHINCS+. ∗It is impractical to implement HORSE variants
on the AVR ATmega2560 MCU due to their large private key sizes. ∗∗The maximum MSS signing capability is 216 since
the EEPROM memory endurance is less than 220 write/erase cycles.

2. Notations and Preliminaries

Notations: || and |x| denote concatenation and the bit length of x, respectively.
x

$← S means x is chosen uniformly at random from the set S. m ∈ {0, 1}∗ is
a finite-length binary message. {qi}bi=a denotes {qa, qa+1, . . . , qb}. log x is log2 x.
[1, n] denotes all integers from 1 to n. f : {0, 1}∗ → {0, 1}L and H : {0, 1}∗ →
{0, 1}L denote one-way and cryptographic hash functions, respectively. a ∗ b and
a

q
∗ b mean a = a ∗ b and a = (a ∗ b mod q), where ∗ is an arbitrary operation.

Definition 1 AHB digital signature SGN consists of three algorithms:

- (sk, PK, ISGN)← SGN.Kg(1κ): Given the security parameter κ, it outputs the
private key sk, the public key PK, and the system-wide parameters ISGN .

- σ ← SGN.Sig(sk,m): Given the sk and message m, it returns a signature σ.

- b← SGN.Ver(PK,m, σ): Given PK, message m, and its corresponding sig-
nature σ, it returns a bit b, with b = 1 meaning valid, and b = 0 otherwise.

Definition 2 Hash to Obtain Random Subset HORS [75] is aHB digital signature
consists of three algorithms:

5

- (sk, PK, IHORS)← HORS.Kg(1κ): Given the security parameter κ, it selects
IHORS ← (t, k, l), generates t random l-bit strings {si}ti=1, and computes vi ←
f(si),∀i = 1, . . . , t. Finally, it sets sk ← {si}ti=1 and PK ← {vi}ti=1.

- σ ← HORS.Sig(sk,m): Given sk and m, it computes h← H(m) and splits h
into k log t-sized substrings {hj}kj=1 and interprets them as integers {ij}kj=1. It
outputs σ ← {sij}kj=1.

- b← HORS.Ver(PK,m, σ): Given PK, m, and σ, it computes {ij}kj=1 as in
HORS.Sig(.). If vij = f(σj), ∀j = 1, . . . , k, it returns b = 1, otherwise b = 0.

Definition 3 LetH = {Hi,t,k,L} be a function family indexed by i, where Hi,t,k,L

maps an arbitrary length input to a L-bit subset of k elements from the set {0, 1, ..., t−
1}. H is r-subset (RSR) and second-preimage resistant (SPR), if, for every prob-
abilistic polynomial-time (PPT) adversary A running in time ≤ T :

InSecRSR
H (T) = max

A
{Pr[(M1,M2, ...,Mr+1)← A(i, t, k)

s.t. Hi,t,k,L(Mr+1) ⊆
r⋃

j=1

Hi,t,k,L(Mj)]} < negl(t, k)

InSecSPR
H (T) = max

A
{Pr[x← {0, 1}∗;x′ ← A(x) s.t. x ̸= x′

and Hi,t,k,L(x) = Hi,t,k,L(x
′)} < negl(L)

3. Models and Use Cases

System Model and Use-case: We assume a traditional public-key-based au-
thentication model for heterogeneous IoT-cloud applications, wherein low-end
IoT devices gather information in a store-and-forward manner for a delay-tolerant
setting. Embedded healthcare devices such as pacemakers and implantable de-
vices are prominent examples [87, 78], in which the medical sensor takes contin-
uous measurements (e.g., heart rate), digitally signs them, and then periodically
uploads the telemetry and corresponding signatures into a cloud server for anal-
ysis. It is noted that other miscellaneous applications operate in similar settings,
such as some smart cities [53] and drone services [79].

In our target use case with wearable medical devices, the longevity, security,
and efficiency of the low-end device are of primary concern. Specifically, our
digital signature scheme focuses on energy-efficient computation (battery life and

6

Resource-limited Wearable
Medical IoT Application

Wearable
devices

Resource-full
Mobile/Cloud

verifiers

Mobile Application

Authentication system properties:
ü PQ (long-term) security
ü Energy and Storage-aware signing
ü Low communiation overhead

Medical reports (e.g., heartbeat and
blood pressure, blood sugar) are signed

and sent to resourceful verifiers

(M, 𝜎)
Physician

Insurance Company

Cardiovascular data exchange

- Monitoring
- Documenting

- Incident investigation
- Data analysis

- Real-time health status
128 80

0 0

1

1

Authentication
Data Structures

PKPK

Public Key
Data StructureSigning

Data Structure

0 1 0 1
1 1 1 1
0 0 1 0

1 1 1 1
1 0 0 1
1 0 1 0

Figure 1: MUM-HORS system model for a resource-limited wearable Medical IoT use-case.

processing limits) and storage on resource-limited signers (e.g., 8-bit microcon-
trollers), while resourceful verifiers (e.g., cloud servers) manage public key stor-
age and message authentication. Our system model is given in Figure 1.

Threat and Security Model: Our threat model assumes a quantum-computing
capable adversary A that can monitor all message-signature pairs and aims to
intercept, modify, and forge them. The digital signature security model capturing
our threat model follows the Existential Unforgeability under Chosen Message
Attacks (EU -CMA).

Definition 4 The EU -CMA experiment for SGN is defined as follows:

- (sk, PK, ISGN) ← SGN.Kg(1κ) , (m∗, σ∗) ← ASGN.Sigsk(.)(PK, ISGN)

- A wins the experiment after sending q queries if 1 ← SGN.Ver(PK,m∗, σ∗)
and m∗ was not queried to the signing oracle SGN.Sigsk(.).

SuccEU -CMA
SGN (A) = Pr[ExptEU -CMA(A) = 1]

InSecEU -CMA
SGN (T) = max

A
{SuccEU -CMA

SGN (A)} < negl(T)

4. Proposed Scheme

Main Idea: We propose MUM-HORS, a multiple-time hash-based signature
scheme, which addresses severe key utilization limitations of HORS for multiple-
time settings while ensuring maximum signer efficiency and weak message secu-
rity. MUM-HORS follows public-key offline-online model, in which public keys
are pre-computed from a cryptographic hash chain approach (offline) and main-
tained at the verifier side, while the signer generates a signature from a master key

7

efficiently (as in [89]). However, as discussed in Section 1 and shown in [89], this
approach causes extremely large public keys and waste of individual components
in public keys. This is due to the fact that, in HORS, to remain signer optimal
by having efficient computation and communication, small values for k enable
efficient signature generation and short signatures. However, following the offline
model results in the waste of significant t − k keys. For instance, for the 128-bit
security parameter setting (t = 1024, k = 25), only 2.44% of public keys are ef-
fectively utilized, which poses a huge degradation to authentication usability and
verifier storage. Moreover, the HORS signature is vulnerable to weak message
attacks [6] as during signing, it does not guarantee the derivation of k distinct
index values (ij), which causes the scheme to not meet the requirements of the
r-subset-resiliency security (See Section 2).

To address the outlined challenges, MUM-HORS incorporates a storage-efficient
two-dimensional bitmap with rt rows, each containing a t-bit list and metadata for
correctness and optimization. During the signing, the first t set bits indicate avail-
able keys, with row and column indices aiding key derivation using the master
key. Marked keys are used, while the remaining t − k keys stay unchanged, and
depleted rows are replaced with new ones to maintain key availability. Moreover,
MUM-HORS includes an efficient weak key mitigation strategy (consisting of XOR
operations) through algorithm design and parameter setup.

Outline of MUM-HORS Algorithms: Algorithm 1 outlines MUM-HORS, and Al-
gorithm 2 illustrates BM operations, as described below:

The MUM-HORS.Kg(.) initializes system parameters IMUM-HORS, including the
HORS and BM parameters (r, rt), representing the total and maximum bitmap
rows, respectively. It generates the master key msk and three random pads (Step
1). An rt-row bitmap is created as a circular queue (with middle node deletion
support) with rt cells, initializing global parameters head (first row’s index), tail
(last row’s index), window (window size in bits), nextrow (next row number),
and activerows (current number of rows). Row-specific parameters include num
(current row number), activebits (number of active bits in the row), and bits[.]
(the t-bit list) (Step 2). Public keys are generated by concatenating msk with each
bit’s row and column number (Step 3). The public key PK shares the bitmap pa-
rameters to ensure synchronization. The private key sk, pads pad1,2,3, and BM are
stored on the signer, while PK is stored on the verifier (Step 4).

The MUM-HORS.Sig(.) first checks if the message hash produces distinct in-
dices. If not, the hash is XORed with three pads; signing proceeds if any pad is
effective (Steps 1-2). If none work, Ctr is concatenated with the hash and itera-
tively hashed until k distinct log t-sized parts are obtained (Steps 3-4). The hash

8

Algorithm 1 Maximum Utilization Multiple HORS (MUM-HORS)
(sk, PK,BM, IMUM-HORS)← MUM-HORS.Kg(1κ):

1: Set IMUM-HORS ← (IHORS, r, rt), msk
$← {0, 1}κ, and {padi}3i=1

$← {0, 1}κ
2: Build bitmap BM = {rowi}rti=1 and set rowi.num = i, rowi.activebits = t, and set all

rowi.bits[.] to 1. Set BM.head = 1, BM.tail = rt, BM.window = t, BM.nextrow = rt + 1,
BM.activerows = rt, and BM.activebits = rt× t

3: Create public keys PK←{pki}ri=1 and set pki.num = i, pki.activepks = t, {pki.keys[j]←
f(PRF (msk||i||j))}1≤i≤r,1≤j≤t. Set PK.head = 1, PK.tail = rt, PK.window = t,
PK.nextrow = rt+ 1, PK.activerows = rt, and PK.activepks = rt× t

4: Send the private key sk ← msk, {padi}3i=1, and BM to the signer, store the public keys PK
and {padi}3i=1 on the verifier, and output the IMUM-HORS

σ ← MUM-HORS.Sig(sk,m): Set Ctr = 1 and hash← Trunc(H(m), k log t)

1: Split hash into k log t-bit substrings {hashj}kj=1 and interpret each as an integer ij
2: if ∃p, q ∈ [1, k] s.t. ip = iq and p ̸= q then hash ⊕= padi and goto 1, i ∈ [1, 3], else goto 5
3: Split hash′ ← Trunc(H(hash||Ctr), k log t) as step 1 into integer indices ij
4: if ∃p, q ∈ [1, k] s.t. ip = iq and p ̸= q then Ctr += 1 and goto 3
5: Compute {(rj , cj)} ← BITMAP GET ROW COLUMN(BM, ij), ∀j ∈ [1, k]
6: return σ ← ({PRF (sk||rj ||cj)}kj=1, Ctr)

Signer is Idle
7: BITMAP UNSET INDICES(BM, ij), ∀j ∈ [1, k]
8: if BITMAP EXTEND MATRIX(BM) == False then No more private keys to sign and exit

b← MUM-HORS.Ver(PK,m, σ): Set hash← Trunc(H(m), k log t)

1: if hash or any pad1,2,3 yield distinct ij as steps 1-2 of MUM-HORS.Sig(.), then goto 3
2: Split hash′ ← Trunc(H(hash||Ctr), k log t) as step 1 of MUM-HORS.Sig(.) into inte-

ger indices ij . if ∃p, q ∈ [1, k] s.t. ip = iq and p ̸= q then Execute steps 3-4 of
MUM-HORS.Sig(.) and return b = 0.

3: Retrieve public key pkj for every index ij similar to BITMAP GET ROW COLUMN(.) and if
(pkj ̸= f(σj)) return b = 0, ∀j ∈ [1, k]. Otherwise, return b = 1

Verifier is Idle
4: Invalidate all the pkj corresponding to the derived ij as in BITMAP UNSET INDICES(.)
5: Extend the view of the public keys similar to BITMAP EXTEND MATRIX(.)

output is truncated to k log t bits for security (Steps 0 and 3). Once k distinct
indices are identified, row and column indices of the first window set bits are
retrieved from the BM using BITMAP GET ROW COLUMN(.) (Step 5) to recon-
struct the private keys as in key generation. The BITMAP GET ROW COLUMN(.)
(Algorithm 2) iterates over the bitmap rows to locate the (index + 1)th set bit
and returns its row and column indices. The iteration follows the circular queue
iteration algorithm. Finally, the signature is generated (Step 6).

When the signer is idle after sending a signature, it unsets the derived k in-

9

Algorithm 2 Bitmap Manipulation Algorithms
b← BITMAP EXTEND MATRIX(BM):

1: if BM.activebits < BM.window then
2: if BM.nextrow ≥ r then return False
3: if BITMAP CLEANUP(BM) == 0 then
4: Iterate over the rows and set index to the index of the row with the minimum .activebits
5: Update BM.activerows −= 1, BM.activebits −= BM[index].activebits, and REMOVE ROW(index)

6: Set fillcapacity = min(rt−BM.activerows, r−BM.nextrow). Add fillcapacity rows where for each, up-

date BM.tail
rt
+= 1 and set BM[BM.tail].num = BM.nextrow, BM[BM.tail].activebits = t, all BM[BM.tail].bits[.]

to 1, and BM.nextrow += 1.
7: return True

n← BITMAP CLEANUP(BM): Set cleaned = 0

1: Iterate over the rows and if row BM[i].activebits == 0 then REMOVE ROW(i) and cleaned += 1
2: return cleaned

(row, col)← BITMAP GET ROW COLUMN(BM, index):
1: Iterate over the rows and if index ≥ BM[i].activebits then index −= BM[i].activebits
2: Set colidx as the index of (index+ 1)th set bit in BM[i].bits[.] and return (BM[i].num, colidx)

BITMAP UNSET INDICES(BM, indices):
1: for index in indices do
2: Iterate over the rows and if index ≥ BM[i].activebits then index −= BM[i].activebits
3: Unset the (index+ 1)th bit in BM[i].bits[.] to 0 and update BM.activebits −= 1 and BM[i].activebits −= 1

REMOVE ROW(index):

1: if index == BM.head then BM.head = BM.head
rt
+= 1

2: else if index == BM.tail then BM.tail
rt
−= 1

3: else
4: if BM.head < BM.tail then
5: if index < BM.tail−BM.head

2
then Shift rows from BM.head to index and set BM.head

rt
+= 1

6: else Shift from BM.tail to index and set BM.tail
rt
−= 1

7: else
8: if BM.head < index then Shift rows from BM.head to index and set BM.head

rt
+= 1 if index−BM.head <

rt− index o.w. Shift rows from BM.tail to index and set BM.tail
rt
−= 1

9: else Shift rows from BM.tail to index and set BM.tail
rt
−= 1 if BM.tail − index < index o.w. Shift rows

from BM.head to index and set BM.head
rt
+= 1

dices in the bitmap using BITMAP UNSET INDICES(.) (Algorithm 2). Sepa-
rating unsetting from index retrieval was a performance-driven decision. Private
keys must correspond to the order of HORS indices derived from the message,
requiring either a mapping data structure after sorting (required for unsetting)
or separating these processes for efficiency. The indices are processed in de-
scending order as computed in MUM-HORS.Sig(.) (Steps 1-4), locating each
index’s position in the bitmap, setting the corresponding bit to 0, and updat-
ing the bitmap’s global and row parameters (Steps 1-3). After updating, the

10

signer checks if there are enough private keys for future messages by invoking
BITMAP EXTEND MATRIX(.) (Algorithm 2) (Step 8). This function extends the
matrix if fewer than window active bits are present. It first checks for and removes
empty rows using BITMAP CLEANUP(.) (Steps 2-3), which removes rows with
zero active bits and returns the number of removed rows. If no rows are empty,
the row with the fewest active bits is removed (Steps 4-6). Additional rows are
then added to fill the BM, initialized, and the bitmap parameters are updated (Step
6). If no extension was needed or it was successful, it returns True (Step 7).

MUM-HORS.Ver(.) first verifies that the message hash and pads produce dis-
tinct indices (Step 1). If not, it checks the Ctr and, in the case of an invalid Ctr,
the verifier rejects the signature and computes a valid Ctr to update the public
key storage (Step 2). It then retrieves the public key corresponding to the ij

th

public key within the first window public keys. If any public key is rejected, the
signature is deemed invalid; otherwise, the signature is accepted (Step 3). Fi-
nally, during idle periods, the verifier removes public keys from storage, similar
to BITMAP UNSET INDICES(.), and if additional public keys are required, the
verifier follows the BITMAP EXTEND MATRIX(.) procedure (Steps 4-5). To ad-
dress potential resynchronization (a common challenge in MTSs [58]) between
the signer and verifier caused by transmission noise or adversarial corruption, we
propose a mitigation algorithm (see Appendix B) that helps with state recovery.

5. Performance Analysis and Comparison

This section analyzes the performance of MUM-HORS and its counterparts,
focusing on signer storage overhead, key and signature sizes, and signing and
verification times, with key generation occurring offline. We discuss the optimal
selection of the row threshold (rt) in the bitmap and evaluate the computational
complexity of each bitmap operation. Our analysis focuses on the implementation
of BM as a circular queue with support for middle node deletion. An alternative
linked-list version, detailed in Appendix A, enhances performance but requires
additional memory for storing each node’s successor address. We provide both an-
alytical and detailed experimental analyses for the signer overhead on commodity
hardware and two selected embedded devices.

5.1. Parameter Selection and Experimental Setup
The evaluation of MUM-HORS and its counterparts on various devices has been

conducted with a security parameter set to κ = 128-bit, as detailed in Tables 1-3.

11

Hardware and Software Configurations: We used three types of devices for our
evaluations. First, we used a desktop with an Intel i9-11900K @ 3.5GHz pro-
cessor and 64GB of RAM to evaluate the signature generation and verification
performance. Second, to demonstrate the signature generation performance of
MUM-HORS for low-end (embedded) IoT settings, we used an 8-bit ATmega2560
@ 16MHz microcontroller with 256KB flash memory, 8KB SRAM, and 8KB
EEPROM, as well as a Raspberry Pi 4 with a Quad-core Cortex-A72 @ 1.8GHz
and 8GB of RAM. We only use a desktop to assess signature verification as our
system model assumes a resourceful verifier. For the one-way and cryptographic
hash functions (i.e., f and H), we choose Blake21 due to its high efficiency on
commodity hardware and low-end embedded devices.
Parameter Selection: The counterparts’ parameters are set according to their 128-
bit security specifications. For MUM-HORS, the parameter relationship can be
derived from the bitmap’s two-dimensional structure, with M as the total number
of messages to be signed and r as the total required number of rows:

M = (r − 1) · t
k
+ 1

BM loads rt rows at a time, each containing t-bit vector, along with metadata
(row number and the number of active bits). Therefore, the size of the bitmap is:

|BM| = rt · (t+ log t+ log r) bits

The parameter rt affects the bitmap size and private key usage (as well as the
number of signable messages). Increasing rt raises the chance of having rows with
no active bits, as the remaining t− k bits are distributed across more rows before
invoking BITMAP EXTEND MATRIX(.). This reduces key loss by permitting the
replacement of empty rows through BITMAP CLEANUP(.) rather than removing
the row with fewer active bits. For example, with parameters (t = 1024, k =
25, l = 256, r = 25601, rt = 11,M = 220), the private key usage is 100%,
allowing all messages to be signed. However, setting rt = 8 results in a loss of
10,536 bits and a reduction of 463 signable messages experimentally.
Optimal Values for rt: To derive the optimal bound for rt, we analyze the bitmap
when the total number of bits is t, just before allocating a new row. The aim is
to ensure that, with high probability, at least one row has fewer than k active bits

1https://github.com/BLAKE2/

12

(ideally close to zero) so that key loss is minimized during row replacement when
selecting k bits among the rows. We formally define the problem as follows:
Question 1: Given rt rows and t bits uniformly distributed among them, what is
the minimum rt such that, with high probability, at least one row has a maximum
load of k bits or less?

To answer this, we translate the problem into the Balls in Bins problem [74].
Specifically, given m balls and n bins, we aim to determine the maximum load
in a bin with high probability after uniformly distributing the m balls. For this
purpose, we apply Theorem 1 from [74]:

Theorem 1 : Let M be the random variable that counts the maximum number of
balls in any bin. We throw m balls independently and uniformly at random into n
bins. Then with high probability, M > loadmax and we have:

loadmax =
m

n
+

√
2
m log n

n

(
1− 1

α

log log n

2 log n

)
, if m≫ n · (log n)3, 0 < α < 1

(1)
In the above context, m balls correspond to t bits, n bins correspond to rt

BM rows, and α is the smoothing parameter. Increasing α provides a more con-
servative estimate of the maximum load, ensuring that, with high probability, the
maximum load is almost the estimated bound. In essence, a higher α shifts the
uniform ball distribution m

n
towards loadmax. While this approach determines an

upper bound on the maximum load, we are interested in having≤ k bits in at least
one row with high probability (minimizing the load). Thus, we define:
Dual of Question 1: Given a bitmap with rt · t bits, where t bits are present, and
rt · t − t bits are marked as used, minimizing the number of unmarked bits in at
least one row is equivalent to maximizing the number of marked bits in at least
one row. What should rt be to ensure that, with rt · t − t marked bits added, the
maximum load in at least one row is t− k or ideally t?

To solve this, we set m = rt · t− t, n = rt and loadmax = t− k and we get:

t− k =
rt · t− t

rt
+

√
2
(rt · t− t) log rt

rt

(
1− 1

α

log log rt

2 log rt

)
,

if rt · t− t≫ rt · (log rt)3, 0 < α < 1

(2)

We analyze the parameters by implementing a numerical solver (in MATLAB,

13

available in our code repository2). With parameters t = 1024 and k = 25 and
setting α = 0.999, our solver outputs a row threshold of 10.903, assuming a
maximum load of t − k. To increase the likelihood of full depletion, assuming
loadmax = t, the solver outputs a safer margin of 13.94 rows.

5.2. Efficiency Evaluation and Comparison
Given the performance evaluation on two embedded platforms and a commod-

ity device in Tables 1-3, takeaways are as follows:

Table 2: Comparison of Signature Schemes on Commodity Hardware (κ = 128-bit security)

Scheme Sig Gen
(µs)

Sig Size
(KB)

sk Size
(KB)

Sig Ver
(µs)

PK Size
(KB)

PQ
Promise

Memory Exp
Code Size

Sampling
Operations

Deterministic
Signing

Full-time Signatures (M = 2κ)
ECDSA [47] 15.81 0.046 0.031 46.24 0.062 ✗ L ✗ ✗

Ed25519 [48] 12.14 0.062 0.031 33.17 0.031 ✗ L ✗ ✓

SchnorrQ [23] 8.57 0.062 0.031 15.42 0.031 ✗ L ✗ ✓

Falcon-512 [34] 170.45 0.67 1.25 28.21 0.87 ✓ M ✓ ✗

Dilithium-II [32] 243.07 2.36 2.46 59.05 1.28 ✓ M ✓ ✗

SPHINCS+ [15] 5217.01 16.67 0.062 415.41 0.031 ✓ H ✗ ✓

M -time Signatures (M = 220)
Zaverucha et al. [94] 14.97 0.046 0.031 28.2 4.06GB ✗ L ✗ ✗

SEMECS [89] 0.68 0.031 0.031 11.9 96MB ✗ L ✗ ✓

HORS [75] 6.12 0.78 0.031 6.35 32GB ✓ L ✗ ✓

HORSE [62]
6.19

0.78
790 MB 6.41

32 ✓ H ✗ ✓
86.25 480 6.46

XMSS [19] 2778.1 2.44 1.34 751.17 0.062 ✓ H ✗ ✓

XMSSMT [42] 6785.85 4.85 5.86 1297.94 0.062 ✓ H ✗ ✓

MUM-HORS 17.56 0.78 1.43 19.17 800MB ✓ L ✗ ✓

The message size is 32 bytes. In the memory expansion and code size column, H denotes high, M denotes medium,
and L denotes low. For SPHINCS+, parameters are (n, h, d, t, k, w) = (16, 66, 22, 64, 33, 16). For XMSS, XMSS-
SHA2 20 256 was selected, and for XMSSMT , XMSSMT-SHA2 20/2 256 was used. HORS and HORSE parameters are
(t, k, l) = (1024, 25, 256), with d for HORSE set to 25290, where d = M ·(1−e−k/t). HORSE can reduce memory by
using more hash computations (Jakobsson [46] method), which, while decreasing private key size, increases signing time.
HORS has been converted to an M-time signature using the same method as MUM-HORS. For MUM-HORS, parameters are
(t, k, l, r, rt) = (1024, 25, 256, 25601, 11). The public key size for MUM-HORS is 25600 full rows plus one row with 25
keys, totaling 800.00076 MB. The f(.) that is used for HORS, HORSE, and MUM-HORS is Blake2-256.

Signer and Verifier Memory Usage: The MUM-HORS signer storage includes a
256-bit master key and a 1.4KB bitmap. The total storage overhead of 1.43KB
is comparable to Falcon-512 and XMSS and is 1.7× smaller than Dilithium-II and
4× than XMSSMT . Compared to HORSE, which uses hash chains, MUM-HORS of-
fers 335-500,000×memory savings. MUM-HORS has low memory expansion and

2https://github.com/kiarashsedghigh/mumhors/Optimizations/row_
threshold.m

14

https://github.com/kiarashsedghigh/mumhors/Optimizations/row_threshold.m
https://github.com/kiarashsedghigh/mumhors/Optimizations/row_threshold.m

Table 3: Energy Usage of Signature Generation and Transmission on an AVR ATMega2560 MCU

Scheme Signature Generation Signature Transmission Total Energy
Cost (mJ)

Max Signing
Operations

Private
key (KB)

PQ
PromiseTime (cycles) Energy Cost (mJ) Sig Size (KB) Energy Cost (mJ)

Full-time Signatures (M = 2κ)
ECDSA [47] 79 185 664 332.285 0.046 0.065 332.35 20 316 0.031 ✗

Ed25519 [48] 22 688 583 92.343 0.062 0.086 92.429 73 063 0.031 ✗

SchnorrQ [23] 3 740 000 15.222 0.062 0.086 15.308 440 946 0.031 ✗

M -time Signatures (M = 220)
SEMECS [89] 195 776 0.797 0.031 0.043 0.84 8 035 714 0.031 ✓

HORS [75] 342 976 1.396 0.78 1.075 2.471 2 731 688 0.031 ✓
∗MSS [77] 5 792 000 23.573 2.295 29.964 53.537 126 081 1.438 ✓

MUM-HORS 637 376 2.594 0.78 1.075 3.669 1 839 738 1.43 ✓

The parameter setting is as in Table 2.
∗The maximum MSS signing capability is 216 since the EEPROM memory endurance is less than 220 write/erase cycles.

code size compared to PQ standards. On an ARM Cortex-M4, Falcon-512 needs
117KB, Dilithium 113KB, and SPHINCS+ 9KB for signing and verifying [49].

MUM-HORS verifier storage is 5× smaller than Zaverucha et al. [94] and 40×
smaller than HORS and deletes the public keys from the memory as they are used.
Communication Bandwidth Overhead: Smaller k values in MUM-HORS reduce
the signature size with fewer private keys. The signature size is comparable to
Falcon-512, 3× smaller than Dilithium-II, and 21× smaller than SPHINCS+.
MUM-HORS has similar signature size as HORS and HORSE, is 6.21× smaller
than XMSSMT , but is larger than non-PQ secure SEMECS, Zaverucha et al. [94],
and full-time ECDSA, Ed25519, and SchnorrQ counterparts.
Signing on the Commodity Device and Verification: MUM-HORS achieves fast sign-
ing and verification. Signing is 17×, 24×, and 511× faster than Falcon-512,
Dilithium-II, and SPHINCS+, respectively, and 1.5× and 1.2× faster than ECDSA
and EdDSA, respectively. While performance is comparable to ECDSA, Ed25519,
and [94], MUM-HORS is 665× faster than XMSSMT . Verification speed matches
signing speed, making MUM-HORS 118× and 38× faster than PQ-secure XMSSMT

and SPHINCS+, respectively, and 4.5× and 3× faster than ECDSA and EdDSA.
Moreover, BITMAP CLEANUP(.) takes 0.027µs, BITMAP UNSET INDICES(.)
0.18µs per index, and BITMAP GET ROW COLUMN(.) 0.23µs on commodity hard-
ware, with the latter being the only one active during signature generation. It
should be noted that BITMAP EXTEND MATRIX(.) does not always remove rows
as it is conditioned on the presence of window bits in the BM.
Signature Generation on Embedded Devices: The efficiency of MUM-HORS on
embedded devices (ARM Cortex A-72) has been presented in Table 1. On the
ARM Cortex A-72, MUM-HORS signing is 1.75× slower than its baseline HORS
due to bitmap operations required for achieving a 41-fold public key size reduc-

15

tion. NIST finalists, like Dilithium, show significant delays in signing (e.g., 16
seconds), making them unsuitable for real-time applications. Moreover, oper-
ations BITMAP CLEANUP(.) takes 0.6µs, BITMAP UNSET INDICES(.) takes
0.89µs per index, and BITMAP GET ROW COLUMN(.) takes 1.53µs.
Energy Impact and Cost of Signing on Embedded devices: In Table 3, we present
the analysis of the impact of signature generation on energy consumption and
battery life in 8-bit AVR microcontrollers using the energy estimation model from
[71] based on the MICAz sensor node. The MICAz node features an ATmega128L
microcontroller (16 MHz, 4KB EEPROM, 128KB flash memory) and a ZigBee
2.4 GHz radio chip (CC2420). It is powered by AA batteries with a maximum
energy capacity of 6750J. According to [71], the ATmega128L MCU consumes
4.07nJ per cycle, while the CC2420 transceiver chip draws 0.168mJ per bit trans-
mitted. Using these results, we estimated the energy consumption for signing and
transmission for MUM-HORS and its counterparts.

The signing capability depends on both signature generation and transmis-
sion efficiency. Notably, MUM-HORS can support a larger number of signatures
(220) than the practical limit of signing operations achievable on a MICAz node
(≈ 2 · 106). Our HB counterpart, the Merkle Signature Scheme (MSS) [77],
supports only 1

14
of the signatures achievable with MUM-HORS. MSS uses Win-

ternitz One-Time Signature (WOTS) and constructs a Merkle tree, as in XMSS
[19], leading to higher signing costs due to the WOTS signature process and path
computation in the tree. Our second HB counterpart, HORS, offers 1.48× more
signatures than MUM-HORS, but at the cost of a significantly larger public key,
approximately 40× larger. The elliptic-curve-based SEMECS can generate more
signatures than the MICAz node’s practical limit. However, it does not provide
post-quantum security. MUM-HORS offers the optimal balance between maximum
signing capability, post-quantum security, and compact key sizes.

6. Security Analysis

Theorem 2 MUM-HORS is EU -CMA secure if H() is r-subset-resilient and second-
preimage resistant:

InSecEU -CMA
MUM-HORS(T) = InSecRSR

H (T) + InSecSPR
H (T) < negl(t, k, L)

Proof: Given a set of adaptively chosen and queried q valid message-signature
pairs {(mi, σi)}qi=1, there are the below cases where the adversary A can forge a
signature:

16

- A breaks r-subset-resilient of H: The A identifies a message m∗ such that its
k distinct elements (as in MUM-HORS.Sig(.)) are among the observed q · k
elements from the last q messages, with a success probability of (q·k

t
)k. We note

that our efficient mitigation method against weak message attacks ensures the
derivation of k distinct indices from a message, either by using its initial hash
XORed with random pads secured by long-term certificates on the verifier, or
through an iterative procedure using an incremental counter Ctr.

The success probability (q·k
t
)k decreases to (k

t
)k due to the bitmap design. Once

the signer selects and uses k bits from the first window, they are marked as
used, preventing reuse in future rounds. Uniqueness is maintained by the row
parameter num, ensuring each bit’s combination (msk||row||col) is distinct.
Even when BITMAP EXTEND MATRIX(.) is invoked, new rows have unique
row numbers, enforced by the global nextrow parameter. Moreover, the verifier
maintains identical global and row parameters to manage public keys, ensuring
synchronization with the signer. This guarantees that once a private key is used,
the corresponding public key is invalidated during verification, preventing reuse.

In summary, since the bitmap replaces k out of t private keys, and the remaining
t − k unused keys are independent and hidden from the attacker, the success
probability per round is reduced to that of HORS as an OTS, which is negligible
for suitable k and t. This probability of forging a signature on HORS, in addition
to (q·k

t
)k, entails the likelihood of inverting the one-way function f(.) to derive

private keys from the verifier’s stored public keys. Grover’s algorithm [37] can
reverse a black-box function with input size N in O(

√
N) steps and O(log2N)

qubits. For L-bit output f(.), the probability of reverting k public keys is 2−k·
L
2 .

- A breaks the second-preimage resistance of H: We evaluate the security of our
hash function H(.) using Grover’s model. The attacker could find m∗ such that
H(mi) = H(m∗) and produce a valid (m∗, σi). Given identical hashes, the k
indices for m∗ will match those for mi by any method (initial hash, pads, or Ctr).
For an L = 256-bit hash function like Blake2-256, the collision probability is
1

2
L
2

, providing 128-bit security, which is negligible. Moreover, the parameters
k and t impact the security of H(.), requiring k log t = L. If k log t < L,
the attacker’s success probability increases to 1

2
k log t

2

. To maintain security, we

ensure k log t = L by truncating hash outputs to k log t bits using the Trunc(.)
function during the signing.

Overall, we conclude with an upper bound:

17

InSecEU -CMA
MUM-HORS(T) < max(

1

2
L
2

,
1

2
k·log t

2

) + 2−k·
L
2 + (

k

t
)k

We set the length of the master key (|msk|) and private key (HORS l parameter)
to κ bits to ensure the minimum required security.

7. Related Work

Symmetric-key based Approaches: Two primary schemes, namely HMAC [10]
and symmetric ciphers [83] are commonly used in IoT systems for their com-
putational efficiency [38]. However, these approaches lack scalability in large,
distributed systems and do not provide public verifiability, which is essential for
health audits [39] and non-repudiation in legal contexts [21]. Digital signatures
[47, 11, 76], though less efficient computationally, support scalable, publicly au-
ditable authentication.
Conventional Digital Signatures: Conventional digital signatures like ECDSA
[47], Ed25519 [11], RSA [76], and BLS [16] are considered for IoT [69], wireless
spectrum management [36], 6G [50], and various other network domains. How-
ever, security protocols relying on these primitives have been shown to deplete
battery life in resource-constrained devices and may require frequent undesirable
maintenance [67, 5]. For example, while RSA is efficient in verification, it re-
quires expensive signing operations and has large key sizes, and although ECDSA
improves efficiency with smaller keys, it still incurs high computational costs.
Moreover, relying on traditional intractability assumptions leaves these schemes
vulnerable to quantum attacks like Shor’s algorithm [82], with ECC-based ones
being more susceptible than RSA [12, 40, 35, 73].
Lightweight Conventional Signatures with Special Trade-offs: Efforts to develop
lightweight digital signatures that improve conventional methods like ECDSA and
SchnorrQ often rely on advanced pre-computation and storage techniques, as done
by SCRA [88] and Nouma et al. in [65]. These schemes rely on the online/offline
signature paradigm [81] involving pre-computed tokens. For instance, Rapid Au-
thentication (RA) [91] leverages pre-computed token aggregation for fast online
signature generation. SEMECS [89] optimizes EC-based signature schemes by
reducing signature and private key sizes of [90], addressing the computational
burden of deriving ephemeral keys in Schnorr [80]-like signatures (e.g., ECDSA,
SchnorrQ) through pre-computing them and storing their hash commitments on
the verifier. Despite their merits, these schemes are also vulnerable to quantum
computers as they rely on traditional intractability assumptions (e.g., (EC)DLP).

18

PQ-secure Signatures: The NIST-PQC standardization [25, 26] features LB sig-
natures CRYSTALS-Dilithium [32] and Falcon [34], alongside HB SPHINCS+
[15] for PQ-secure signatures. Dilithium, based on the Fiat-Shamir with Aborts
principle [56] and M-LWE and M-SIS problems [17, 52], uses a uniform distribu-
tion to reduce the public key size by about half, although it results in slightly larger
signatures and its variable signing time may impact performance on resource-
limited devices. Falcon, a hash-and-sign scheme [31] using NTRU lattices [30],
requires double-precision floating-point arithmetic and complex operations like
Fast Fourier Transform and matrix decomposition, making it unsuitable for de-
vices lacking a Floating-point Unit (FPU). While for 128-bit security, Falcon’s
public key and signature sizes (897 and 690 Bytes, respectively) are smaller than
Dilithium’s (1.28 KB and 2.36 KB, respectively), both are less appropriate for
resource-limited devices due to their complexity, larger key and signature sizes,
and vulnerability to side-channel attacks [8, 24, 27]. Currently, there are no de-
ployable open-source implementations ofLB digital signatures for highly resource-
limited embedded devices (e.g., with 8-bit microprocessors), aside from BLISS
[28], which was not selected as NIST-PQC standard due to heavy side-channel
attack vulnerabilities [84].
Lightweight PQ-secure Signatures with Special Assumptions: Recent lightweight
PQ-secure signature schemes rely on specific architectural features and distributed
computation to enhance the signer efficiency. ANT [9] transforms a LB OTS
into a polynomially-bounded many-time signature through distributed public key
computation under the assumption of honest-but-curious servers and passive ad-
versaries. HASES [64] and its extension [66] convert HORS signature [75] into
a many-time signature, assuming a secure enclave (e.g., Intel SGX [59]) to store
the private key, enabling public key derivation and forward security. Despite their
signer efficiency, these special assumptions on the verifier side may limit the ap-
plicability of these solutions in some NextG IoT settings.
Hash-based Signatures and their Building Blocks: Unlike LB schemes, HB
standards such as XMSS [41] and SPHINCS+ [15] rely on minimal intractability
and number-theoretical assumptions, offering strong PQ security. These schemes
use cryptographic hash functions like SHA-256, which are widely available, fa-
cilitating the transition to PQ secure options. While some HB signatures provide
efficient signing and verification for a limited number of signatures [75, 54, 18],
others, such as [13, 44, 20], offer high security for extended usage but involve
large signature sizes and costly signing processes.
HB FTSs, built on OTSs [51, 61, 18, 43], allow a few signature generations

19

with the same key pair, though security diminishes with each additional message.
The first FTS, BiBa [70], prioritized fast verification and small signature sizes but
had trade-offs in signing time and public key size. Subsequent FTSs, like HORS
[75], built on Lamport OTS with Bos-Chaum signatures and cover-free families,
and its variants [13, 55, 54, 62, 86, 92], and others like PORS [7] and FORS [15]
enhanced the robustness against weak message attacks [6]. However, they have
large private keys (e.g., HORSE [62]) and signing times (e.g., HORSIC+ [55]), or
are time-valid secure (e.g., TV-HORS [86]).

Stateless HB schemes like SPHINCS [14] and SPHINCS+ [15] use a hy-
pertree structure to extend FTSs to full-time signatures. This structure involves
Merkle trees with Winternitz OTS [18] as leaves, where each node signs 2h child
nodes, with h as the tree height. For example, with h = 50, a single key can
generate one million signatures per second over 30 years. The hypertree’s leaves
are FTSs (e.g., HORST instances [14]), which allow multiple message signing,
enhance path collision resilience, and reduce tree height. While this approach de-
creases signature size using fewer OTS instances, it increases signing time due
to Merkle tree generation. Despite implementations for resource-limited devices
(e.g., Armed-SPHINCS [45]), these schemes are computationally intensive, with
SPHINCS+ being 330× and 21× slower than ECDSA and Dilithium, and its sig-
natures being 362× and 7× larger, respectively. Moreover, stateful HB signa-
tures, such as XMSSMT [42] and LMS [57], provide strong security and features
like forward security. They use a Merkle tree to group 2h OTS key pairs into one
signature key pair, with the root as the public key and each leaf as an OTS. A
Merkle signature includes the OTS key pair index, the OTS signature, and the au-
thentication path. However, their high computational cost and memory usage limit
their practicality for resource-constrained devices. For example, XMSSMT signa-
tures can be 4.85 KB, which is 105× and 2× larger than ECDSA and Dilithium
signatures, respectively, and the signing is 430× and 30× respectively slower.

Among HB signature schemes, HORS [75] is valued for its efficiency and
underpins signatures like XMSSMT [19] and SPHINCS+ [15]. However, extend-
ing HORS FTS to full-time signatures using hypertree-based (e.g., SPHINCS+)
or tree-based (e.g., XMSSMT) methods is inefficient for resource-constrained de-
vices. An alternative is the online/offline paradigm (as in [89]), where public keys
are pre-computed and stored offline, with one key used per signing round. While
HORS benefits from small k values for short signatures, it requires large t for
adequate security (e.g., 128-bit). For example, signing 220 messages with 128-bit
security requires t = 1024 and k = 25, leading to 32GB of public key storage.
In each signing round, 25 keys are used and 999 discarded, resulting in a 97%

20

key loss and only 2.44% effective utilization of the public key storage. This in-
efficiency affects device utility, authentication lifetime, and computation/storage
requirements. To reduce key discards in HORS, private keys can be tracked via in-
dices (one per key), with each t key derived from the master key padded with the
corresponding index. However, this memory-inefficient approach requires 4KB
of storage for t = 1024 (assuming each index occupies 4 bytes). For micro-
controllers like the ATmega328, which have limited flash memory and a thresh-
old of 10,000 write/erase cycles, maintaining the index list in SRAM reduces
flash write operations and preserves the data without corruption. Despite improv-
ing HORSE’s [62] computationally expensive hash-based key generation (using
Jakobsson hash calls [46]), this method still risks depleting public key chains (on
verifier), potentially causing early termination.

8. Conclusion

As next-generation networks increasingly rely on heterogeneous IoTs with
resource-limited devices, ensuring secure, scalable authentication is paramount.
While traditional digital signatures provide necessary authentication tools, they
face significant challenges due to the emerging threat of quantum computing
and the inadequacies of current post-quantum cryptography (PQC) solutions for
resource-constrained devices. To address these limitations, our Maximum Uti-
lization Multiple HORS (MUM-HORS) signature scheme offers a lightweight, PQ-
secure alternative tailored for IoT applications. With its ability to deliver fast
signing, short signatures, and efficient key utilization, MUM-HORS provides sig-
nificant improvements over existing solutions. The experimental results show its
superior performance on embedded platforms, making it a promising candidate
for secure, resource-efficient digital signatures in IoTs. Hence, MUM-HORS paves
the way for more secure, scalable, and practical cryptographic solutions tailored to
the evolving needs of applications like wearable medical devices or digital twins.

9. Acknowledgement

This research is partially supported by the Cisco Research Award (220159).

References Cited

[1] Abdul Ahad, Mohammad Tahir, Muhammad Aman Sheikh, Kazi Istiaque
Ahmed, Amna Mughees, and Abdullah Numani. Technologies trend towards

21

5g network for smart health-care using iot: A review. Sensors, 20(14):4047,
2020.

[2] Gorjan Alagic, Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang,
Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, et al.
Status report on the third round of the nist post-quantum cryptography stan-
dardization process. 2022.

[3] Moayad Aloqaily, Ouns Bouachir, Fakhri Karray, Ismaeel Al Ridhawi, and
Abdulmotaleb El Saddik. Integrating digital twin and advanced intelligent
technologies to realize the metaverse. IEEE Consumer Electronics Maga-
zine, 12(6):47–55, 2022.

[4] Apple. Apple Watch — apple.com. https://www.apple.com/
watch/, 2024. [Accessed 21-07-2024].

[5] Giuseppe Ateniese, Giuseppe Bianchi, Angelo T Capossele, Chiara Petrioli,
and Dora Spenza. Low-cost standard signatures for energy-harvesting wire-
less sensor networks. ACM Transactions on Embedded Computing Systems
(TECS), 16(3):1–23, 2017.

[6] Jean-Philippe Aumasson and Guillaume Endignoux. Clarifying the subset-
resilience problem. Cryptology ePrint Archive, 2017.

[7] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless
hash-based signatures. In Cryptographers’ Track at the RSA Conference,
pages 219–242. Springer, 2018.

[8] Rouzbeh Behnia, Muslum Ozgur Ozmen, Attila A. Yavuz, and Mike Ro-
sulek. Tachyon: Fast signatures from compact knapsack. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1855–1867, New York, NY, USA, 2018. ACM.

[9] Rouzbeh Behnia and Attilla Altay Yavuz. Towards practical post-quantum
signatures for resource-limited internet of things. In Annual Computer Secu-
rity Applications Conference, ACSAC, page 119–130, New York, NY, USA,
2021. Association for Computing Machinery.

[10] M. Bellare and P. Rogaway. Introduction to modern cryptography. In UCSD
CSE Course, page 207. 1st edition, 2005. http://www.cs.ucsd.edu/
˜mihir/cse207/classnotes.html.

22

https://www.apple.com/watch/
https://www.apple.com/watch/
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html

[11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic Engi-
neering, 2(2):77–89, Sep 2012.

[12] Daniel J Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-
quantum rsa. In Post-Quantum Cryptography: 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings
8, pages 311–329. Springer, 2017.

[13] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter
Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: Practical stateless hash-
based signatures. In Advances in Cryptology – EUROCRYPT 2015: 34th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 368–397. Springer Berlin Heidelberg, April
2015.

[14] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter
Schwabe, and Zooko Wilcox-O’Hearn. Sphincs: practical stateless hash-
based signatures. In Annual international conference on the theory and ap-
plications of cryptographic techniques, pages 368–397. Springer, 2015.

[15] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
Association for Computing Machinery, 2019.

[16] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,
pages 514–532, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[17] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[18] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the winternitz one-time signature
scheme. In International conference on cryptology in Africa, pages 363–
378. Springer, 2011.

23

[19] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss - a practical
forward secure signature scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography, pages 117–129. Springer
Berlin Heidelberg, 2011.

[20] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss - a practical
forward secure signature scheme based on minimal security assumptions. In
Proceedings of the 4th International Conference on Post-Quantum Cryptog-
raphy, PQCrypto’11, pages 117–129, Berlin, Heidelberg, 2011. Springer-
Verlag.

[21] Carmen Camara, Pedro Peris-Lopez, and Juan E Tapiador. Security and pri-
vacy issues in implantable medical devices: A comprehensive survey. Jour-
nal of biomedical informatics, 55:272–289, 2015.

[22] Maria-Dolores Cano and Antonio Cañavate-Sanchez. Preserving data pri-
vacy in the internet of medical things using dual signature ecdsa. Security
and Communication Networks, 2020(1):4960964, 2020.

[23] Craig Costello and Patrick Longa. Schnorrq: Schnorr signatures on fourq.
Technical report, MSR Tech Report, 2016. Available at: https://www.
microsoft. com/en-us/research/wp-content/uploads/2016/07/SchnorrQ. pdf,
2016.

[24] Nicolas T Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to
achieve a mceliece-based digital signature scheme. In Advances in Cryp-
tology—ASIACRYPT 2001: 7th International Conference on the Theory and
Application of Cryptology and Information Security Gold Coast, Australia,
December 9–13, 2001 Proceedings 7, pages 157–174. Springer, 2001.

[25] Post-Quantum Cryptography. Selected algorithms 2022. URL: https://csrc.
nist. gov/projects/post-quantum-cryptography/selected-algorithms-2022,
2022.

[26] Saleh Darzi, Kasra Ahmadi, Saeed Aghapour, Attila Altay Yavuz, and
Mehran Mozaffari Kermani. Envisioning the future of cyber security in post-
quantum era: A survey on pq standardization, applications, challenges and
opportunities. arXiv preprint arXiv:2310.12037, 2023.

[27] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Advances in Cryptology -

24

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, pages 40–56, 2013.

[28] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013: 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 40–56, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[29] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2018.

[30] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-
based encryption over ntru lattices. In Advances in Cryptology–ASIACRYPT
2014: 20th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11,
2014, Proceedings, Part II 20, pages 22–41. Springer, 2014.

[31] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings
of the ACM on international symposium on symbolic and algebraic compu-
tation, pages 191–198, 2016.

[32] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2018(1):238–268, Feb. 2018.

[33] FiBit. Fitbit Official Site for Activity Trackers & More — fitbit.com.
https://www.fitbit.com/global/us/home, 2024. [Accessed
21-07-2024].

[34] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, Zhenfei Zhang, et al. Falcon: Fast-fourier lattice-based compact
signatures over ntru. Submission to the NIST’s post-quantum cryptography
standardization process, 36(5):1–75, 2018.

25

https://www.fitbit.com/global/us/home

[35] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa inte-
gers in 8 hours using 20 million noisy qubits (2019). arXiv preprint
arXiv:1905.09749, 1905.

[36] M. Grissa, A. A. Yavuz, and B. Hamdaoui. Cuckoo filter-based location-
privacy preservation in database-driven cognitive radio networks. In Com-
puter Networks and Information Security (WSCNIS), 2015 World Symposium
on, pages 1–7, Sept 2015.

[37] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[38] Jorge Guajardo, Attila A. Yavuz, Benjamin Glas, Markus Ihle, Hamit Ha-
cioglu, and Karsten Wehefrit. System and method for counter mode en-
crypted communication with reduced bandwidth. US 20140270163 A1,
Filed: March 14, 2013, Issued: September 18, 2014.

[39] Daniel Halperin, Thomas S Heydt-Benjamin, Kevin Fu, Tadayoshi Kohno,
and William H Maisel. Security and privacy for implantable medical devices.
IEEE pervasive computing, 7(1):30–39, 2008.

[40] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and
Mathias Soeken. Improved quantum circuits for elliptic curve discrete log-
arithms. In Post-Quantum Cryptography: 11th International Conference,
PQCrypto 2020, Paris, France, April 15–17, 2020, Proceedings 11, pages
425–444. Springer, 2020.

[41] Andreas Hülsing, Denis Butin, Stefan Gazdag, Joost Rijneveld, and Aziz
Mohaisen. Xmss: extended merkle signature scheme, 2018.

[42] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parame-
ters for xmss mt. In Security Engineering and Intelligence Informatics: CD-
ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany,
September 2-6, 2013. Proceedings 8, pages 194–208. Springer, 2013.

[43] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parame-
ters for xmss mt. In International conference on availability, reliability, and
security, pages 194–208. Springer, 2013.

26

[44] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. Armed sphincs. In
Proceedings, Part I, of the 19th IACR International Conference on Public-
Key Cryptography — PKC 2016 - Volume 9614, pages 446–470, Berlin, Hei-
delberg, 2016. Springer-Verlag.

[45] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. Armed SPHINCS -
computing a 41 KB signature in 16 KB of RAM. In Public-Key Cryptog-
raphy - PKC 2016 - 19th IACR International Conference on Practice and
Theory in Public-Key Cryptography, pages 446–470, March 2016.

[46] Markus Jakobsson. Fractal hash sequence representation and traversal. In
Proceedings IEEE International Symposium on Information Theory,, page
437. IEEE, 2002.

[47] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International Journal of Information Security,
1(1):36–63, Aug 2001.

[48] Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature algo-
rithm (eddsa). Technical report, 2017.

[49] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking nist pqc on arm cortex-m4. 2019.

[50] Syed Hussain Ali Kazmi, Rosilah Hassan, Faizan Qamar, Kashif Nisar, and
Ag Asri Ag Ibrahim. Security concepts in emerging 6g communication:
Threats, countermeasures, authentication techniques and research directions.
Symmetry, 15(6):1147, 2023.

[51] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI International Palo Alto,
1979.

[52] Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. Designs, Codes and Cryptography, 75(3):565–599,
2015.

[53] Hakjun Lee. Slars: Secure lightweight authentication for roaming service in
smart city. IEICE Transactions on Communications, 2024.

27

[54] J. Lee, S. Kim, Y. Cho, Y. Chung, and Y. Park. HORSIC: An efficient one-
time signature scheme for wireless sensor networks. Information Processing
Letters, 112(20):783 – 787, 2012.

[55] Jaeheung Lee and Yongsu Park. Horsic+: An efficient post-quantum few-
time signature scheme. Applied Sciences, 11(16):7350, 2021.

[56] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 598–616.
Springer, 2009.

[57] David McGrew, Michael Curcio, and Scott Fluhrer. Hash-Based Signatures.
Internet-Draft draft-mcgrew-hash-sigs-15, Internet Engineering Task Force,
January 2019. Work in Progress.

[58] David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag,
Denis Butin, and Johannes Buchmann. State management for hash-based
signatures. In Security Standardisation Research: Third International Con-
ference, SSR 2016, Gaithersburg, MD, USA, December 5–6, 2016, Proceed-
ings 3, pages 244–260. Springer, 2016.

[59] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. Intel® software guard extensions
(intel® sgx) support for dynamic memory management inside an enclave.
In Proceedings of the Hardware and Architectural Support for Security and
Privacy 2016, HASP 2016, New York, NY, USA, 2016. Association for
Computing Machinery.

[60] Abolfazl Mehbodniya, Julian L Webber, Rahul Neware, Farrukh Arslan,
Raja Varma Pamba, and Mohammad Shabaz. Modified lamport merkle dig-
ital signature blockchain framework for authentication of internet of things
healthcare data. Expert Systems, 39(10):e12978, 2022.

[61] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
Stanford university, 1979.

[62] William D Neumann. Horse: an extension of an r-time signature scheme
with fast signing and verification. In International Conference on Informa-
tion Technology: Coding and Computing, 2004.

28

[63] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun
Li, Dusit Niyato, Octavia Dobre, and H Vincent Poor. 6g internet of things:
A comprehensive survey. IEEE Internet of Things Journal, 9(1):359–383,
2021.

[64] Saif E Nouma and Attila A Yavuz. Post-quantum forward-secure signatures
with hardware-support for internet of things. In ICC 2023-IEEE Interna-
tional Conference on Communications, pages 4540–4545. IEEE, 2023.

[65] Saif E. Nouma and Attila A. Yavuz. Practical cryptographic forensic tools
for lightweight internet of things and cold storage systems. IoTDI ’23, page
340–353, New York, NY, USA, 2023. Association for Computing Machin-
ery.

[66] Saif E Nouma and Attila A Yavuz. Trustworthy and efficient digital twins in
post-quantum era with hybrid hardware-assisted signatures. ACM Transac-
tions on Multimedia Computing, Communications and Applications, 2023.

[67] Aleksandr Ometov, Pavel Masek, Lukas Malina, Roman Florea, Jiri Hosek,
Sergey Andreev, Jan Hajny, Jussi Niutanen, and Yevgeni Koucheryavy. Fea-
sibility characterization of cryptographic primitives for constrained (wear-
able) iot devices. In 2016 IEEE International Conference on Pervasive Com-
puting and Communication Workshops. IEEE, 2016.

[68] Muslum Ozgur Ozmen, Attila A Yavuz, and Rouzbeh Behnia. Energy-aware
digital signatures for embedded medical devices. In 2019 IEEE Conference
on Communications and Network Security (CNS), pages 55–63. IEEE, 2019.

[69] Renuka Sahebrao Pawar and Dhananjay Ramrao Kalbande. Optimization
of quality of service using eceba protocol in wireless body area network.
International Journal of Information Technology, 15(2):595–610, 2023.

[70] A. Perrig. The BiBa: One-time signature and broadcast authentication pro-
tocol. In Proceedings of the ACM Conference on Computer and Communi-
cations Security, pages 28–37, November 2001.

[71] Krzysztof Piotrowski, Peter Langendoerfer, and Steffen Peter. How public
key cryptography influences wireless sensor node lifetime. In Proceedings
of the fourth ACM on Security of ad hoc and sensor networks, 2006.

29

[72] Manas Pradhan and Josef Noll. Security, privacy, and dependability evalua-
tion in verification and validation life cycles for military iot systems. IEEE
Communications Magazine, 58(8):14–20, 2020.

[73] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm
for elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[74] Martin Raab and Angelika Steger. “balls into bins”—a simple and tight
analysis. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 159–170. Springer, 1998.

[75] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time signa-
tures with fast signing and verifying. Springer, 2002.

[76] R.L. Rivest, A. Shamir, and L.A. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[77] Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen, Johannes Buchmann,
and Christof Paar. Fast hash-based signatures on constrained devices. In
Smart Card Research and Advanced Applications: 8th IFIP WG 8.8/11.2
International Conference, CARDIS 2008. Springer, 2008.

[78] Mikail Mohammed Salim, Laurence Tianruo Yang, and Jong Hyuk Park.
Lightweight authentication scheme for iot based e-healthcare service com-
munication. IEEE Journal of Biomedical and Health Informatics, 2023.

[79] Rajkumar SC, Karthick KR, et al. Secure session key pairing and a
lightweight key authentication scheme for liable drone services. Cyber Se-
curity and Applications, 1:100012, 2023.

[80] C. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

[81] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In
Advances in Cryptology—CRYPTO 2001: 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19–23, 2001
Proceedings 21, pages 355–367. Springer, 2001.

[82] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Review, 1999.

30

[83] D. Stinson. Cryptography: Theory and Practice,Second Edition.
CRC/C&H, 2002.

[84] Mehdi Tibouchi and Alexandre Wallet. One bit is all it takes: a devastating
timing attack on bliss’s non-constant time sign flips. Journal of Mathemati-
cal Cryptology, 15(1):131–142, 2020.

[85] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D
Garcia, and Frank Piessens. A tale of two worlds: Assessing the vulnerabil-
ity of enclave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1741–1758,
2019.

[86] Qiyan Wang, Himanshu Khurana, Ying Huang, and Klara Nahrstedt. Time
valid one-time signature for time-critical multicast data authentication. In
IEEE INFOCOM 2009, pages 1233–1241. IEEE, 2009.

[87] Xu Yang, Xun Yi, Surya Nepal, Ibrahim Khalil, Xinyi Huang, and Jian Shen.
Efficient and anonymous authentication for healthcare service with cloud
based wbans. IEEE Transactions on Services Computing, 15(5):2728–2741,
2021.

[88] A. A. Yavuz, A. Mudgerikar, A. Singla, I. Papapanagiotou, and E. Bertino.
Real-time digital signatures for time-critical networks. IEEE Transactions
on Information Forensics and Security, 2017.

[89] A. A. Yavuz and M. O. Ozmen. Ultra lightweight multiple-time digital sig-
nature for the internet of things devices. IEEE Transactions on Services
Computing, pages 1–1, 2019.

[90] Attila A. Yavuz. ETA: Efficient and tiny and authentication for heteroge-
neous wireless systems. In Proceedings of the sixth ACM conference on
Security and privacy in wireless and mobile networks. ACM.

[91] Attila A. Yavuz. An efficient real-time broadcast authentication scheme for
command and control messages. Information Forensics and Security, IEEE
Transactions on, 9(10):1733–1742, Oct 2014.

[92] Attila A Yavuz, Saleh Darzi, and Saif E Nouma. Lightweight and scalable
post-quantum authentication for medical internet of things.

31

[93] Attila A. Yavuz, Peng Ning, and Michael K. Reiter. BAF and FI-BAF: Ef-
ficient and publicly verifiable cryptographic schemes for secure logging in
resource-constrained systems. ACM Transaction on Information System Se-
curity, 15(2), 2012.

[94] G.M. Zaverucha and D.R. Stinson. Short one-time signatures. Cryptology
ePrint Archive, Report 2010/446, 2010. https://eprint.iacr.org/
2010/446.

32

https://eprint.iacr.org/2010/446
https://eprint.iacr.org/2010/446

Appendix A. Bitmap Functionalities Using Linked List

This section details the implementation of BM functionalities using a linked
list instead of a circular queue and examines the resulting performance changes.
The same design applies to managing public keys on the verifier. This design
change affects only the key generation phase of MUM-HORS while signing and
verification proceed unchanged. Consequently, we present the key generation for
MUM-HORS and the full details of the new implementation of the BM.

Appendix A.1. MUM-HORS Key Generation and Bitmap Operations
Based on Algorithm 3, key generation changes affect Steps 2 and 3. In Step

2, BM is initialized as a linked list with rt nodes, where head and tail are pointers
to the first and last nodes, and each row has a next parameter pointing to the
subsequent row. In Step 3, public keys are generated similarly as a r-node linked
list, with each node containing t public keys derived from the master key msk.
Note that the verifier does not need to load the entire public key list into memory
to avoid overhead. Instead, public keys are stored on disk, and only rt nodes are
loaded into memory as needed. Both signer and verifier share the semantics of the
BM parameters for synchronization as before.

Algorithm 3 Key Generation of MUM-HORS (Linked List Version)
(sk, PK,BM, IMUM-HORS)← MUM-HORS.Kg(1κ):

1: Set IMUM-HORS ← (IHORS, r, rt), msk
$← {0, 1}κ, and {padi}3i=1

2: Create bitmap BM = {rowi}rti=1 and set rowi.num = i, rowi.activebits = t, rowi.next =
rowi+1, all rowi.bits[.] to 1, and rowrt.next = ⊥. Set BM.head = row1, BM.tail = rowrt,
BM.window = t, BM.nextrow = rt+ 1, BM.activerows = rt, and BM.activebits = rt× t.

3: Create public keys PK ← {pki}ri=1 and set pki.num = i, pki.activepks = t,
pki.next = pki+1, {pki.keys[j]←f(PRF (msk||i||j))}1≤i≤r,1≤j≤t, and pkr.next = ⊥.
Set PK.head = pk1, PK.tail = pkrt, PK.window = t, PK.nextrow = rt + 1,
PK.activerows = rt, and PK.activepks = rt× t.

4: Send the private key sk ← msk, {padi}3i=1, and BM to the signer, store the public keys PK
and {padi}3i=1 on the verifier, and output the IMUM-HORS

The BM operations using a linked list are detailed in Algorithm 4. The func-
tion BITMAP EXTEND MATRIX(.) extends the BM if there are insufficient set bits
(less than window bits), calling BITMAP CLEANUP(.) to remove rows with zero
active bits or, if necessary, the row with the fewest active bits. Fresh rows are
then added to the end of the list, which is pointed to by the tail parameter. The
BITMAP GET ROW COLUMN(.) function returns the row and column indices of

33

the (index + 1)th set bit for the given index by traversing the list instead of a
circular queue. The BITMAP UNSET INDICES(.) function unsets the provided
indices where for each index index, the (index+ 1)th set bit of the window is set
to zero, with the main difference being the traversal method.

Algorithm 4 Bitmap Manipulation Operations (Linked List Version)
b← BITMAP EXTEND MATRIX(BM):

1: if BM.activebits < BM.window then
2: if BM.nextrow > r then return False
3: if BITMAP CLEANUP(BM) == 0 then
4: Set row to the row with the minimum activebits parameter
5: Update BM.activerows −= 1 and BM.activebits −= row.activebits
6: Remove row from BM
7: fillcapacity = min(rt− BM.activerows, r − BM.nextrow)
8: Add fillcapacity rows to BM by creating new row and setting row.num = BM.nextrow,

row.activebits = t, all row.bits[.] to 1, row.next = ⊥, BM.tail.next = row and
BM.nextrow += 1 for each.

9: return True

n← BITMAP CLEANUP(BM): Set cleaned = 0 and row = BM.head
1: while row is not ⊥ do
2: if row.activebits == 0 then
3: Remove row from BM and set cleaned += 1 and row = row.next

4: return cleaned

(row, col)← BITMAP GET ROW COLUMN(BM, index): Set row = BM.head
1: while row is not ⊥ do
2: if index < row.activebits then break
3: Update index −= row.activebits and row = row.next

4: Set colidx as the index of (index+1)th set bit in row.bits[.] and return (row.num, colidx)

BITMAP UNSET INDICES(BM, indices):
1: for index in indices do
2: row = BM.head
3: while row is not ⊥ do
4: if index < row.activebits then break
5: index −= row.activebits and row = row.next

6: Unset the (index+ 1)th bit in row.bits[.] to 0
7: Update BM.activebits −= 1 and row.activebits −= 1

Appendix A.2. Performance Evaluation and Comparison
Using a linked list instead of a circular queue adds an 8-byte next field per

node, increasing memory usage by 88 bytes for (rt = 11) rows on a 64-bit sys-

34

tem. Although linked lists enable faster iteration compared to shifting rows in a
circular queue—particularly for middle rows—the additional memory overhead
is a tradeoff for reduced computational complexity. On a commodity hardware
BITMAP CLEANUP(.) takes 0.027µs, BITMAP UNSET INDICES(.) 0.18µs per
index, and BITMAP GET ROW COLUMN(.) 0.23µs. On Raspberry Pi 4, the per-
formance is: BITMAP CLEANUP(.) takes 0.51µs, BITMAP UNSET INDICES(.)
0.77µs per index, and BITMAP GET ROW COLUMN(.) 1.47µs. The array-based
implementation incurs additional computation due to row shifting and slightly
higher costs for row iteration due to being a circular queue.

Appendix B. MUM-HORS Signer and Verifier Index Synchronization

Given the challenge of state synchronization in MTSs built on OTSs [58],
MUM-HORS is vulnerable to desynchronization if messages are corrupted in tran-
sit. To address this, we propose the Second Chance Algorithm (SCA), allowing
the verifier to recover from out-of-sync states by retaining mismatched public
keys. This self-correcting approach enables the verifier to restore synchronization
using future valid message-signature pairs without requiring communication with
the signer. The new MUM-HORS verifier is given in Algorithm 5.

The first two steps and steps 11-12 are similar to the MUM-HORS’s verifier
presented in Algorithm 1. SCA algorithm allows each rejected public key to re-
main in the list for a second chance, as the rejection cause (message or signature
corruption) may be unclear. Normal public keys are denoted as pkij and those
given a second chance as pk∗ij . Using the property of HORS key indices (distance
between each key), we apply the following rules: (i) For a verified pair (si, sj)
with i < j, if there are j − i public keys between them, mark all pk∗ij in between
as pkij . (ii) For a verified pair (si, si+1), mark all pk∗ij in between as ⊥ (deleted).
If a signature cannot be validated, we not only mark the pkij as pk∗ij but also delete
the actual value of the public key for the received private key and mark it as ⊥ if
the signature is not corrupted (Steps 3-10).

It is important to note that, according to the security proof in Section 6, the
advantage in forging a signature does not arise from corrupting the signature along
with the message, as its security relies on the pre-image resistance of the one-way
function used. Therefore, we can assume that any signature corruption results
from transmission errors, which can be corrected using error correction codes. As
a result, the SCA algorithm can be optimized under the assumption of message
corruption. However, the strict rules of the SCA algorithm may hinder immediate

35

Algorithm 5 MUM-HORS Verifier with SCA algorithm
b← MUM-HORS.Ver(PK,m, σ): Set hash← Trunc(H(m), k log t) and b = 1

1: if hash or any pad1,2,3 yield distinct ij as steps 1-2 of MUM-HORS.Sig(.), then goto 3
2: Split hash′ ← Trunc(H(hash||Ctr), k log t) as step 1 of MUM-HORS.Sig(.) into inte-

ger indices ij . if ∃p, q ∈ [1, k] s.t. ip = iq and p ̸= q then Execute steps 3-4 of
MUM-HORS.Sig(.) and return b = 0.

3: for j = 1 to k do
4: Find the (ij)

th public key as in BITMAP GET ROW COLUMN(.) and count all the pk∗ij
until that point as doubt

5: if sj is verified then mark the corresponding public key as ⊥
6: else
7: Mark the sj’s public key as pk∗ij and try the next doubt non-deleted public keys.
8: if any verified then check with last verified signature (sj′ given j > j′). if there are

j − j′ public keys then mark all the pk∗ij between sj′ and sj as pkij , else if j′ = j + 1, then,
mark all the the pk∗ij as the ⊥.

9: else return b = 0
10: return b

Verifier is Idle
11: Invalidate all the pkj corresponding to the derived ij as in BITMAP UNSET INDICES(.)
12: Extend the view of the public keys similar to BITMAP EXTEND MATRIX(.)

state recovery during many consecutive corruptions, as the number of corruptions
could exceed j − j′ between two indices ij and ij′ .

The SCA algorithm provides a probabilistic solution to the synchronization is-
sue. However, the most reliable approach is to reset both the signer and verifier to
a fresh row number—flushing the bitmap and verifier’s memory—once the num-
ber of corruptions exceeds a specified threshold. This can be managed through an
additional communication mechanism and software checks. It is worthy to note
this fact again that the synchronization issue is inherent to statefulHB signatures
and is not only limited to our scheme [58].

36

	Introduction
	Our Contribution

	Notations and Preliminaries
	Models and Use Cases
	Proposed Scheme
	Performance Analysis and Comparison
	Parameter Selection and Experimental Setup
	Efficiency Evaluation and Comparison

	Security Analysis
	Related Work
	Conclusion
	Acknowledgement
	Bitmap Functionalities Using Linked List
	MUM-HORS Key Generation and Bitmap Operations
	Performance Evaluation and Comparison

	MUM-HORS Signer and Verifier Index Synchronization

